| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringm1expp1.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 2 |
|
ringm1expp1.2 |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 3 |
|
ringm1expp1.3 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 4 |
|
ringm1expp1.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
ringm1expp1.5 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 7 |
6
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 8 |
4 7
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
4
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 11 |
9 1 4
|
ringidcld |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 12 |
9 2 10 11
|
grpinvcld |
⊢ ( 𝜑 → ( 𝑁 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 |
6 9
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 15 |
6 14
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 16 |
13 3 15
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ ( 𝑁 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐾 + 1 ) ↑ ( 𝑁 ‘ 1 ) ) = ( ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) ) |
| 17 |
8 5 12 16
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ↑ ( 𝑁 ‘ 1 ) ) = ( ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) ) |
| 18 |
13 3 8 5 12
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 19 |
9 14 1 2 4 18
|
ringnegr |
⊢ ( 𝜑 → ( ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ 1 ) ) = ( 𝑁 ‘ ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) ) ) |
| 20 |
17 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ↑ ( 𝑁 ‘ 1 ) ) = ( 𝑁 ‘ ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) ) ) |