Metamath Proof Explorer


Theorem ringm1expp1

Description: Ring exponentiation of minus one: Adding one to the exponent is the same as taking the additive inverse. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses ringm1expp1.1 1 = ( 1r𝑅 )
ringm1expp1.2 𝑁 = ( invg𝑅 )
ringm1expp1.3 = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
ringm1expp1.4 ( 𝜑𝑅 ∈ Ring )
ringm1expp1.5 ( 𝜑𝐾 ∈ ℕ0 )
Assertion ringm1expp1 ( 𝜑 → ( ( 𝐾 + 1 ) ( 𝑁1 ) ) = ( 𝑁 ‘ ( 𝐾 ( 𝑁1 ) ) ) )

Proof

Step Hyp Ref Expression
1 ringm1expp1.1 1 = ( 1r𝑅 )
2 ringm1expp1.2 𝑁 = ( invg𝑅 )
3 ringm1expp1.3 = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
4 ringm1expp1.4 ( 𝜑𝑅 ∈ Ring )
5 ringm1expp1.5 ( 𝜑𝐾 ∈ ℕ0 )
6 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
7 6 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
8 4 7 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
9 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
10 4 ringgrpd ( 𝜑𝑅 ∈ Grp )
11 9 1 4 ringidcld ( 𝜑1 ∈ ( Base ‘ 𝑅 ) )
12 9 2 10 11 grpinvcld ( 𝜑 → ( 𝑁1 ) ∈ ( Base ‘ 𝑅 ) )
13 6 9 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
14 eqid ( .r𝑅 ) = ( .r𝑅 )
15 6 14 mgpplusg ( .r𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
16 13 3 15 mulgnn0p1 ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ ( 𝑁1 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐾 + 1 ) ( 𝑁1 ) ) = ( ( 𝐾 ( 𝑁1 ) ) ( .r𝑅 ) ( 𝑁1 ) ) )
17 8 5 12 16 syl3anc ( 𝜑 → ( ( 𝐾 + 1 ) ( 𝑁1 ) ) = ( ( 𝐾 ( 𝑁1 ) ) ( .r𝑅 ) ( 𝑁1 ) ) )
18 13 3 8 5 12 mulgnn0cld ( 𝜑 → ( 𝐾 ( 𝑁1 ) ) ∈ ( Base ‘ 𝑅 ) )
19 9 14 1 2 4 18 ringnegr ( 𝜑 → ( ( 𝐾 ( 𝑁1 ) ) ( .r𝑅 ) ( 𝑁1 ) ) = ( 𝑁 ‘ ( 𝐾 ( 𝑁1 ) ) ) )
20 17 19 eqtrd ( 𝜑 → ( ( 𝐾 + 1 ) ( 𝑁1 ) ) = ( 𝑁 ‘ ( 𝐾 ( 𝑁1 ) ) ) )