| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 2 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 3 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmX ( N - 1 ) ) e. NN0 ) | 
						
							| 4 | 3 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmX ( N - 1 ) ) e. CC ) | 
						
							| 5 | 1 4 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N - 1 ) ) e. CC ) | 
						
							| 6 |  | peano2z |  |-  ( N e. ZZ -> ( N + 1 ) e. ZZ ) | 
						
							| 7 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmX ( N + 1 ) ) e. NN0 ) | 
						
							| 8 | 7 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmX ( N + 1 ) ) e. CC ) | 
						
							| 9 | 6 8 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) e. CC ) | 
						
							| 10 | 5 9 | addcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX ( N - 1 ) ) + ( A rmX ( N + 1 ) ) ) = ( ( A rmX ( N + 1 ) ) + ( A rmX ( N - 1 ) ) ) ) | 
						
							| 11 |  | rmxp1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) = ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) | 
						
							| 12 |  | rmxm1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N - 1 ) ) = ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) | 
						
							| 13 | 11 12 | oveq12d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX ( N + 1 ) ) + ( A rmX ( N - 1 ) ) ) = ( ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) + ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) ) | 
						
							| 14 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) | 
						
							| 15 | 14 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) | 
						
							| 16 |  | eluzelcn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. CC ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) | 
						
							| 18 | 15 17 | mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. A ) e. CC ) | 
						
							| 19 |  | rmspecnonsq |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) | 
						
							| 20 | 19 | eldifad |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) | 
						
							| 21 | 20 | nncnd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) | 
						
							| 22 | 21 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) | 
						
							| 23 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 24 | 23 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) | 
						
							| 25 | 24 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) | 
						
							| 26 | 22 25 | mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) e. CC ) | 
						
							| 27 | 17 15 | mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A x. ( A rmX N ) ) e. CC ) | 
						
							| 28 | 18 26 27 | ppncand |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) + ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) = ( ( ( A rmX N ) x. A ) + ( A x. ( A rmX N ) ) ) ) | 
						
							| 29 | 15 17 | mulcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. A ) = ( A x. ( A rmX N ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. A ) + ( A x. ( A rmX N ) ) ) = ( ( A x. ( A rmX N ) ) + ( A x. ( A rmX N ) ) ) ) | 
						
							| 31 |  | 2cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> 2 e. CC ) | 
						
							| 32 | 31 17 15 | mulassd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. A ) x. ( A rmX N ) ) = ( 2 x. ( A x. ( A rmX N ) ) ) ) | 
						
							| 33 | 27 | 2timesd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( A x. ( A rmX N ) ) ) = ( ( A x. ( A rmX N ) ) + ( A x. ( A rmX N ) ) ) ) | 
						
							| 34 | 32 33 | eqtr2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A x. ( A rmX N ) ) + ( A x. ( A rmX N ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) | 
						
							| 35 | 28 30 34 | 3eqtrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) + ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) | 
						
							| 36 | 10 13 35 | 3eqtrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX ( N - 1 ) ) + ( A rmX ( N + 1 ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) | 
						
							| 37 |  | 2cn |  |-  2 e. CC | 
						
							| 38 |  | mulcl |  |-  ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) | 
						
							| 39 | 37 17 38 | sylancr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. A ) e. CC ) | 
						
							| 40 | 39 15 | mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. A ) x. ( A rmX N ) ) e. CC ) | 
						
							| 41 | 40 5 9 | subaddd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( 2 x. A ) x. ( A rmX N ) ) - ( A rmX ( N - 1 ) ) ) = ( A rmX ( N + 1 ) ) <-> ( ( A rmX ( N - 1 ) ) + ( A rmX ( N + 1 ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) ) | 
						
							| 42 | 36 41 | mpbird |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( 2 x. A ) x. ( A rmX N ) ) - ( A rmX ( N - 1 ) ) ) = ( A rmX ( N + 1 ) ) ) | 
						
							| 43 | 42 | eqcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmX N ) ) - ( A rmX ( N - 1 ) ) ) ) |