Step |
Hyp |
Ref |
Expression |
1 |
|
rngcifuestrc.r |
|- R = ( RngCat ` U ) |
2 |
|
rngcifuestrc.e |
|- E = ( ExtStrCat ` U ) |
3 |
|
rngcifuestrc.b |
|- B = ( Base ` R ) |
4 |
|
rngcifuestrc.u |
|- ( ph -> U e. V ) |
5 |
|
rngcifuestrc.f |
|- ( ph -> F = ( _I |` B ) ) |
6 |
|
rngcifuestrc.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RngHomo y ) ) ) ) |
7 |
|
eqid |
|- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
8 |
1 3 4
|
rngcbas |
|- ( ph -> B = ( U i^i Rng ) ) |
9 |
|
incom |
|- ( U i^i Rng ) = ( Rng i^i U ) |
10 |
8 9
|
eqtrdi |
|- ( ph -> B = ( Rng i^i U ) ) |
11 |
|
eqid |
|- ( Hom ` R ) = ( Hom ` R ) |
12 |
1 3 4 11
|
rngchomfval |
|- ( ph -> ( Hom ` R ) = ( RngHomo |` ( B X. B ) ) ) |
13 |
7 4 10 12
|
rnghmsubcsetc |
|- ( ph -> ( Hom ` R ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
14 |
13
|
idi |
|- ( ph -> ( Hom ` R ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
15 |
|
eqid |
|- ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) = ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) |
16 |
|
eqid |
|- ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |
17 |
1 4 8 12
|
rngcval |
|- ( ph -> R = ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |
18 |
17
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) |
19 |
3 18
|
syl5eq |
|- ( ph -> B = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) |
20 |
19
|
reseq2d |
|- ( ph -> ( _I |` B ) = ( _I |` ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) ) |
21 |
5 20
|
eqtrd |
|- ( ph -> F = ( _I |` ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) ) |
22 |
19
|
adantr |
|- ( ( ph /\ x e. B ) -> B = ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) ) |
23 |
12
|
oveqdr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( Hom ` R ) y ) = ( x ( RngHomo |` ( B X. B ) ) y ) ) |
24 |
|
ovres |
|- ( ( x e. B /\ y e. B ) -> ( x ( RngHomo |` ( B X. B ) ) y ) = ( x RngHomo y ) ) |
25 |
24
|
adantl |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( RngHomo |` ( B X. B ) ) y ) = ( x RngHomo y ) ) |
26 |
23 25
|
eqtr2d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x RngHomo y ) = ( x ( Hom ` R ) y ) ) |
27 |
26
|
reseq2d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( x RngHomo y ) ) = ( _I |` ( x ( Hom ` R ) y ) ) ) |
28 |
19 22 27
|
mpoeq123dva |
|- ( ph -> ( x e. B , y e. B |-> ( _I |` ( x RngHomo y ) ) ) = ( x e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) , y e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |-> ( _I |` ( x ( Hom ` R ) y ) ) ) ) |
29 |
6 28
|
eqtrd |
|- ( ph -> G = ( x e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) , y e. ( Base ` ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |-> ( _I |` ( x ( Hom ` R ) y ) ) ) ) |
30 |
14 15 16 21 29
|
inclfusubc |
|- ( ph -> F ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func ( ExtStrCat ` U ) ) G ) |
31 |
2
|
a1i |
|- ( ph -> E = ( ExtStrCat ` U ) ) |
32 |
17 31
|
oveq12d |
|- ( ph -> ( R Func E ) = ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func ( ExtStrCat ` U ) ) ) |
33 |
32
|
breqd |
|- ( ph -> ( F ( R Func E ) G <-> F ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func ( ExtStrCat ` U ) ) G ) ) |
34 |
30 33
|
mpbird |
|- ( ph -> F ( R Func E ) G ) |