Step |
Hyp |
Ref |
Expression |
1 |
|
rngcifuestrc.r |
⊢ 𝑅 = ( RngCat ‘ 𝑈 ) |
2 |
|
rngcifuestrc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
3 |
|
rngcifuestrc.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
rngcifuestrc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
5 |
|
rngcifuestrc.f |
⊢ ( 𝜑 → 𝐹 = ( I ↾ 𝐵 ) ) |
6 |
|
rngcifuestrc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) ) |
7 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
8 |
1 3 4
|
rngcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
9 |
|
incom |
⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) |
10 |
8 9
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Rng ∩ 𝑈 ) ) |
11 |
|
eqid |
⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) |
12 |
1 3 4 11
|
rngchomfval |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) ) |
13 |
7 4 10 12
|
rnghmsubcsetc |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
14 |
13
|
idi |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
15 |
|
eqid |
⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) |
17 |
1 4 8 12
|
rngcval |
⊢ ( 𝜑 → 𝑅 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) |
19 |
3 18
|
syl5eq |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) |
20 |
19
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) ) |
21 |
5 20
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( I ↾ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) ) |
22 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ) |
23 |
12
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ) |
24 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 RngHomo 𝑦 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 RngHomo 𝑦 ) ) |
26 |
23 25
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 RngHomo 𝑦 ) = ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) |
27 |
26
|
reseq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) |
28 |
19 22 27
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RngHomo 𝑦 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) , 𝑦 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) ) |
29 |
6 28
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) , 𝑦 ∈ ( Base ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑅 ) 𝑦 ) ) ) ) |
30 |
14 15 16 21 29
|
inclfusubc |
⊢ ( 𝜑 → 𝐹 ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) 𝐺 ) |
31 |
2
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( ExtStrCat ‘ 𝑈 ) ) |
32 |
17 31
|
oveq12d |
⊢ ( 𝜑 → ( 𝑅 Func 𝐸 ) = ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) ) |
33 |
32
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑅 Func 𝐸 ) 𝐺 ↔ 𝐹 ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func ( ExtStrCat ‘ 𝑈 ) ) 𝐺 ) ) |
34 |
30 33
|
mpbird |
⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝐸 ) 𝐺 ) |