Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhm.u |
|- ( ph -> U e. V ) |
2 |
|
rngcrescrhm.c |
|- C = ( RngCat ` U ) |
3 |
|
rngcrescrhm.r |
|- ( ph -> R = ( Ring i^i U ) ) |
4 |
|
rngcrescrhm.h |
|- H = ( RingHom |` ( R X. R ) ) |
5 |
|
eqid |
|- ( C |`cat H ) = ( C |`cat H ) |
6 |
2
|
fvexi |
|- C e. _V |
7 |
6
|
a1i |
|- ( ph -> C e. _V ) |
8 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
9 |
3 8
|
eqtrdi |
|- ( ph -> R = ( U i^i Ring ) ) |
10 |
|
inex1g |
|- ( U e. V -> ( U i^i Ring ) e. _V ) |
11 |
1 10
|
syl |
|- ( ph -> ( U i^i Ring ) e. _V ) |
12 |
9 11
|
eqeltrd |
|- ( ph -> R e. _V ) |
13 |
|
inss1 |
|- ( Ring i^i U ) C_ Ring |
14 |
3 13
|
eqsstrdi |
|- ( ph -> R C_ Ring ) |
15 |
|
xpss12 |
|- ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) |
16 |
14 14 15
|
syl2anc |
|- ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) |
17 |
|
rhmfn |
|- RingHom Fn ( Ring X. Ring ) |
18 |
|
fnssresb |
|- ( RingHom Fn ( Ring X. Ring ) -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
19 |
17 18
|
mp1i |
|- ( ph -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
20 |
16 19
|
mpbird |
|- ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
21 |
4
|
fneq1i |
|- ( H Fn ( R X. R ) <-> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
22 |
20 21
|
sylibr |
|- ( ph -> H Fn ( R X. R ) ) |
23 |
5 7 12 22
|
rescval2 |
|- ( ph -> ( C |`cat H ) = ( ( C |`s R ) sSet <. ( Hom ` ndx ) , H >. ) ) |