| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcrescrhm.u |
|- ( ph -> U e. V ) |
| 2 |
|
rngcrescrhm.c |
|- C = ( RngCat ` U ) |
| 3 |
|
rngcrescrhm.r |
|- ( ph -> R = ( Ring i^i U ) ) |
| 4 |
|
rngcrescrhm.h |
|- H = ( RingHom |` ( R X. R ) ) |
| 5 |
|
eqid |
|- ( C |`cat H ) = ( C |`cat H ) |
| 6 |
2
|
fvexi |
|- C e. _V |
| 7 |
6
|
a1i |
|- ( ph -> C e. _V ) |
| 8 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
| 9 |
3 8
|
eqtrdi |
|- ( ph -> R = ( U i^i Ring ) ) |
| 10 |
|
inex1g |
|- ( U e. V -> ( U i^i Ring ) e. _V ) |
| 11 |
1 10
|
syl |
|- ( ph -> ( U i^i Ring ) e. _V ) |
| 12 |
9 11
|
eqeltrd |
|- ( ph -> R e. _V ) |
| 13 |
|
inss1 |
|- ( Ring i^i U ) C_ Ring |
| 14 |
3 13
|
eqsstrdi |
|- ( ph -> R C_ Ring ) |
| 15 |
|
xpss12 |
|- ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) |
| 16 |
14 14 15
|
syl2anc |
|- ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) |
| 17 |
|
rhmfn |
|- RingHom Fn ( Ring X. Ring ) |
| 18 |
|
fnssresb |
|- ( RingHom Fn ( Ring X. Ring ) -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
| 19 |
17 18
|
mp1i |
|- ( ph -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
| 20 |
16 19
|
mpbird |
|- ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
| 21 |
4
|
fneq1i |
|- ( H Fn ( R X. R ) <-> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
| 22 |
20 21
|
sylibr |
|- ( ph -> H Fn ( R X. R ) ) |
| 23 |
5 7 12 22
|
rescval2 |
|- ( ph -> ( C |`cat H ) = ( ( C |`s R ) sSet <. ( Hom ` ndx ) , H >. ) ) |