| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcsectALTV.c |  |-  C = ( RngCatALTV ` U ) | 
						
							| 2 |  | rngcsectALTV.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | rngcsectALTV.u |  |-  ( ph -> U e. V ) | 
						
							| 4 |  | rngcsectALTV.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | rngcsectALTV.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | rngcsectALTV.e |  |-  E = ( Base ` X ) | 
						
							| 7 |  | rngcsectALTV.n |  |-  S = ( Sect ` C ) | 
						
							| 8 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 9 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 10 |  | eqid |  |-  ( Id ` C ) = ( Id ` C ) | 
						
							| 11 | 1 | rngccatALTV |  |-  ( U e. V -> C e. Cat ) | 
						
							| 12 | 3 11 | syl |  |-  ( ph -> C e. Cat ) | 
						
							| 13 | 2 8 9 10 7 12 4 5 | issect |  |-  ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) | 
						
							| 14 | 1 2 3 8 4 5 | rngchomALTV |  |-  ( ph -> ( X ( Hom ` C ) Y ) = ( X RngHom Y ) ) | 
						
							| 15 | 14 | eleq2d |  |-  ( ph -> ( F e. ( X ( Hom ` C ) Y ) <-> F e. ( X RngHom Y ) ) ) | 
						
							| 16 | 1 2 3 8 5 4 | rngchomALTV |  |-  ( ph -> ( Y ( Hom ` C ) X ) = ( Y RngHom X ) ) | 
						
							| 17 | 16 | eleq2d |  |-  ( ph -> ( G e. ( Y ( Hom ` C ) X ) <-> G e. ( Y RngHom X ) ) ) | 
						
							| 18 | 15 17 | anbi12d |  |-  ( ph -> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) ) | 
						
							| 19 | 18 | anbi1d |  |-  ( ph -> ( ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> U e. V ) | 
						
							| 21 | 4 | adantr |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> X e. B ) | 
						
							| 22 | 5 | adantr |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> Y e. B ) | 
						
							| 23 |  | simprl |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> F e. ( X RngHom Y ) ) | 
						
							| 24 |  | simprr |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> G e. ( Y RngHom X ) ) | 
						
							| 25 | 1 2 20 9 21 22 21 23 24 | rngccoALTV |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( G o. F ) ) | 
						
							| 26 | 1 2 10 3 4 6 | rngcidALTV |  |-  ( ph -> ( ( Id ` C ) ` X ) = ( _I |` E ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( ( Id ` C ) ` X ) = ( _I |` E ) ) | 
						
							| 28 | 25 27 | eqeq12d |  |-  ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) <-> ( G o. F ) = ( _I |` E ) ) ) | 
						
							| 29 | 28 | pm5.32da |  |-  ( ph -> ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` E ) ) ) ) | 
						
							| 30 | 19 29 | bitrd |  |-  ( ph -> ( ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` E ) ) ) ) | 
						
							| 31 |  | df-3an |  |-  ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) | 
						
							| 32 |  | df-3an |  |-  ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` E ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` E ) ) ) | 
						
							| 33 | 30 31 32 | 3bitr4g |  |-  ( ph -> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` E ) ) ) ) | 
						
							| 34 | 13 33 | bitrd |  |-  ( ph -> ( F ( X S Y ) G <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` E ) ) ) ) |