| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcsectALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 2 |  | rngcsectALTV.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | rngcsectALTV.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 4 |  | rngcsectALTV.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | rngcsectALTV.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | rngcsectALTV.e | ⊢ 𝐸  =  ( Base ‘ 𝑋 ) | 
						
							| 7 |  | rngcsectALTV.n | ⊢ 𝑆  =  ( Sect ‘ 𝐶 ) | 
						
							| 8 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 9 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 10 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 11 | 1 | rngccatALTV | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 13 | 2 8 9 10 7 12 4 5 | issect | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺  ↔  ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ∧  𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) | 
						
							| 14 | 1 2 3 8 4 5 | rngchomALTV | ⊢ ( 𝜑  →  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  =  ( 𝑋  RngHom  𝑌 ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ↔  𝐹  ∈  ( 𝑋  RngHom  𝑌 ) ) ) | 
						
							| 16 | 1 2 3 8 5 4 | rngchomALTV | ⊢ ( 𝜑  →  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  =  ( 𝑌  RngHom  𝑋 ) ) | 
						
							| 17 | 16 | eleq2d | ⊢ ( 𝜑  →  ( 𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ↔  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) ) | 
						
							| 18 | 15 17 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ∧  𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 ) )  ↔  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) ) ) | 
						
							| 19 | 18 | anbi1d | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ∧  𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 ) )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  𝑈  ∈  𝑉 ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 22 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 23 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  𝐹  ∈  ( 𝑋  RngHom  𝑌 ) ) | 
						
							| 24 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) | 
						
							| 25 | 1 2 20 9 21 22 21 23 24 | rngccoALTV | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 26 | 1 2 10 3 4 6 | rngcidALTV | ⊢ ( 𝜑  →  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  =  (  I   ↾  𝐸 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  =  (  I   ↾  𝐸 ) ) | 
						
							| 28 | 25 27 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) ) )  →  ( ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  ↔  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐸 ) ) ) | 
						
							| 29 | 28 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) )  ∧  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐸 ) ) ) ) | 
						
							| 30 | 19 29 | bitrd | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ∧  𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 ) )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) )  ∧  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐸 ) ) ) ) | 
						
							| 31 |  | df-3an | ⊢ ( ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ∧  𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ∧  𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 ) )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) | 
						
							| 32 |  | df-3an | ⊢ ( ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 )  ∧  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐸 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 ) )  ∧  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐸 ) ) ) | 
						
							| 33 | 30 31 32 | 3bitr4g | ⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( 𝑋 ( Hom  ‘ 𝐶 ) 𝑌 )  ∧  𝐺  ∈  ( 𝑌 ( Hom  ‘ 𝐶 ) 𝑋 )  ∧  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 )  =  ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  ↔  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 )  ∧  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐸 ) ) ) ) | 
						
							| 34 | 13 33 | bitrd | ⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺  ↔  ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  ∧  𝐺  ∈  ( 𝑌  RngHom  𝑋 )  ∧  ( 𝐺  ∘  𝐹 )  =  (  I   ↾  𝐸 ) ) ) ) |