Metamath Proof Explorer


Theorem rngcsectALTV

Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcsectALTV.c C=RngCatALTVU
rngcsectALTV.b B=BaseC
rngcsectALTV.u φUV
rngcsectALTV.x φXB
rngcsectALTV.y φYB
rngcsectALTV.e E=BaseX
rngcsectALTV.n S=SectC
Assertion rngcsectALTV φFXSYGFXRngHomYGYRngHomXGF=IE

Proof

Step Hyp Ref Expression
1 rngcsectALTV.c C=RngCatALTVU
2 rngcsectALTV.b B=BaseC
3 rngcsectALTV.u φUV
4 rngcsectALTV.x φXB
5 rngcsectALTV.y φYB
6 rngcsectALTV.e E=BaseX
7 rngcsectALTV.n S=SectC
8 eqid HomC=HomC
9 eqid compC=compC
10 eqid IdC=IdC
11 1 rngccatALTV UVCCat
12 3 11 syl φCCat
13 2 8 9 10 7 12 4 5 issect φFXSYGFXHomCYGYHomCXGXYcompCXF=IdCX
14 1 2 3 8 4 5 rngchomALTV φXHomCY=XRngHomY
15 14 eleq2d φFXHomCYFXRngHomY
16 1 2 3 8 5 4 rngchomALTV φYHomCX=YRngHomX
17 16 eleq2d φGYHomCXGYRngHomX
18 15 17 anbi12d φFXHomCYGYHomCXFXRngHomYGYRngHomX
19 18 anbi1d φFXHomCYGYHomCXGXYcompCXF=IdCXFXRngHomYGYRngHomXGXYcompCXF=IdCX
20 3 adantr φFXRngHomYGYRngHomXUV
21 4 adantr φFXRngHomYGYRngHomXXB
22 5 adantr φFXRngHomYGYRngHomXYB
23 simprl φFXRngHomYGYRngHomXFXRngHomY
24 simprr φFXRngHomYGYRngHomXGYRngHomX
25 1 2 20 9 21 22 21 23 24 rngccoALTV φFXRngHomYGYRngHomXGXYcompCXF=GF
26 1 2 10 3 4 6 rngcidALTV φIdCX=IE
27 26 adantr φFXRngHomYGYRngHomXIdCX=IE
28 25 27 eqeq12d φFXRngHomYGYRngHomXGXYcompCXF=IdCXGF=IE
29 28 pm5.32da φFXRngHomYGYRngHomXGXYcompCXF=IdCXFXRngHomYGYRngHomXGF=IE
30 19 29 bitrd φFXHomCYGYHomCXGXYcompCXF=IdCXFXRngHomYGYRngHomXGF=IE
31 df-3an FXHomCYGYHomCXGXYcompCXF=IdCXFXHomCYGYHomCXGXYcompCXF=IdCX
32 df-3an FXRngHomYGYRngHomXGF=IEFXRngHomYGYRngHomXGF=IE
33 30 31 32 3bitr4g φFXHomCYGYHomCXGXYcompCXF=IdCXFXRngHomYGYRngHomXGF=IE
34 13 33 bitrd φFXSYGFXRngHomYGYRngHomXGF=IE