Metamath Proof Explorer


Theorem rngcinvALTV

Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcsectALTV.c C=RngCatALTVU
rngcsectALTV.b B=BaseC
rngcsectALTV.u φUV
rngcsectALTV.x φXB
rngcsectALTV.y φYB
rngcinvALTV.n N=InvC
Assertion rngcinvALTV φFXNYGFXRngIsoYG=F-1

Proof

Step Hyp Ref Expression
1 rngcsectALTV.c C=RngCatALTVU
2 rngcsectALTV.b B=BaseC
3 rngcsectALTV.u φUV
4 rngcsectALTV.x φXB
5 rngcsectALTV.y φYB
6 rngcinvALTV.n N=InvC
7 1 rngccatALTV UVCCat
8 3 7 syl φCCat
9 eqid SectC=SectC
10 2 6 8 4 5 9 isinv φFXNYGFXSectCYGGYSectCXF
11 eqid BaseX=BaseX
12 1 2 3 4 5 11 9 rngcsectALTV φFXSectCYGFXRngHomYGYRngHomXGF=IBaseX
13 df-3an FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXGF=IBaseX
14 12 13 bitrdi φFXSectCYGFXRngHomYGYRngHomXGF=IBaseX
15 eqid BaseY=BaseY
16 1 2 3 5 4 15 9 rngcsectALTV φGYSectCXFGYRngHomXFXRngHomYFG=IBaseY
17 3ancoma GYRngHomXFXRngHomYFG=IBaseYFXRngHomYGYRngHomXFG=IBaseY
18 df-3an FXRngHomYGYRngHomXFG=IBaseYFXRngHomYGYRngHomXFG=IBaseY
19 17 18 bitri GYRngHomXFXRngHomYFG=IBaseYFXRngHomYGYRngHomXFG=IBaseY
20 16 19 bitrdi φGYSectCXFFXRngHomYGYRngHomXFG=IBaseY
21 14 20 anbi12d φFXSectCYGGYSectCXFFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFG=IBaseY
22 anandi FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFG=IBaseYFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseY
23 21 22 bitrdi φFXSectCYGGYSectCXFFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseY
24 simplrl FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFXRngHomY
25 24 adantl φFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFXRngHomY
26 11 15 rnghmf FXRngHomYF:BaseXBaseY
27 15 11 rnghmf GYRngHomXG:BaseYBaseX
28 26 27 anim12i FXRngHomYGYRngHomXF:BaseXBaseYG:BaseYBaseX
29 28 ad2antlr FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseX
30 simpr FXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFG=IBaseY
31 30 adantl FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFG=IBaseY
32 simpr FXRngHomYGYRngHomXGF=IBaseXGF=IBaseX
33 32 ad2antrl FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYGF=IBaseX
34 29 31 33 jca32 FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseX
35 34 adantl φFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYF:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseX
36 fcof1o F:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseXF:BaseX1-1 ontoBaseYF-1=G
37 eqcom F-1=GG=F-1
38 37 anbi2i F:BaseX1-1 ontoBaseYF-1=GF:BaseX1-1 ontoBaseYG=F-1
39 36 38 sylib F:BaseXBaseYG:BaseYBaseXFG=IBaseYGF=IBaseXF:BaseX1-1 ontoBaseYG=F-1
40 35 39 syl φFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYF:BaseX1-1 ontoBaseYG=F-1
41 anass FXRngHomYF:BaseX1-1 ontoBaseYG=F-1FXRngHomYF:BaseX1-1 ontoBaseYG=F-1
42 25 40 41 sylanbrc φFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFXRngHomYF:BaseX1-1 ontoBaseYG=F-1
43 11 15 isrngim2 XBYBFXRngIsoYFXRngHomYF:BaseX1-1 ontoBaseY
44 4 5 43 syl2anc φFXRngIsoYFXRngHomYF:BaseX1-1 ontoBaseY
45 44 anbi1d φFXRngIsoYG=F-1FXRngHomYF:BaseX1-1 ontoBaseYG=F-1
46 45 adantr φFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFXRngIsoYG=F-1FXRngHomYF:BaseX1-1 ontoBaseYG=F-1
47 42 46 mpbird φFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFXRngIsoYG=F-1
48 11 15 rngimrnghm FXRngIsoYFXRngHomY
49 48 ad2antrl φFXRngIsoYG=F-1FXRngHomY
50 isrngim XBYBFXRngIsoYFXRngHomYF-1YRngHomX
51 4 5 50 syl2anc φFXRngIsoYFXRngHomYF-1YRngHomX
52 eleq1 F-1=GF-1YRngHomXGYRngHomX
53 52 eqcoms G=F-1F-1YRngHomXGYRngHomX
54 53 anbi2d G=F-1FXRngHomYF-1YRngHomXFXRngHomYGYRngHomX
55 51 54 sylan9bbr G=F-1φFXRngIsoYFXRngHomYGYRngHomX
56 simpr FXRngHomYGYRngHomXGYRngHomX
57 55 56 syl6bi G=F-1φFXRngIsoYGYRngHomX
58 57 com12 FXRngIsoYG=F-1φGYRngHomX
59 58 expdimp FXRngIsoYG=F-1φGYRngHomX
60 59 impcom φFXRngIsoYG=F-1GYRngHomX
61 coeq1 G=F-1GF=F-1F
62 61 ad2antll φFXRngIsoYG=F-1GF=F-1F
63 11 15 rngimf1o FXRngIsoYF:BaseX1-1 ontoBaseY
64 63 ad2antrl φFXRngIsoYG=F-1F:BaseX1-1 ontoBaseY
65 f1ococnv1 F:BaseX1-1 ontoBaseYF-1F=IBaseX
66 64 65 syl φFXRngIsoYG=F-1F-1F=IBaseX
67 62 66 eqtrd φFXRngIsoYG=F-1GF=IBaseX
68 49 60 67 jca31 φFXRngIsoYG=F-1FXRngHomYGYRngHomXGF=IBaseX
69 51 biimpcd FXRngIsoYφFXRngHomYF-1YRngHomX
70 69 adantr FXRngIsoYG=F-1φFXRngHomYF-1YRngHomX
71 70 impcom φFXRngIsoYG=F-1FXRngHomYF-1YRngHomX
72 eleq1 G=F-1GYRngHomXF-1YRngHomX
73 72 ad2antll φFXRngIsoYG=F-1GYRngHomXF-1YRngHomX
74 73 anbi2d φFXRngIsoYG=F-1FXRngHomYGYRngHomXFXRngHomYF-1YRngHomX
75 71 74 mpbird φFXRngIsoYG=F-1FXRngHomYGYRngHomX
76 coeq2 G=F-1FG=FF-1
77 76 ad2antll φFXRngIsoYG=F-1FG=FF-1
78 f1ococnv2 F:BaseX1-1 ontoBaseYFF-1=IBaseY
79 64 78 syl φFXRngIsoYG=F-1FF-1=IBaseY
80 77 79 eqtrd φFXRngIsoYG=F-1FG=IBaseY
81 75 67 80 jca31 φFXRngIsoYG=F-1FXRngHomYGYRngHomXGF=IBaseXFG=IBaseY
82 68 75 81 jca31 φFXRngIsoYG=F-1FXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseY
83 47 82 impbida φFXRngHomYGYRngHomXGF=IBaseXFXRngHomYGYRngHomXFXRngHomYGYRngHomXGF=IBaseXFG=IBaseYFXRngIsoYG=F-1
84 10 23 83 3bitrd φFXNYGFXRngIsoYG=F-1