| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcsectALTV.c |  |-  C = ( RngCatALTV ` U ) | 
						
							| 2 |  | rngcsectALTV.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | rngcsectALTV.u |  |-  ( ph -> U e. V ) | 
						
							| 4 |  | rngcsectALTV.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | rngcsectALTV.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | rngcinvALTV.n |  |-  N = ( Inv ` C ) | 
						
							| 7 | 1 | rngccatALTV |  |-  ( U e. V -> C e. Cat ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> C e. Cat ) | 
						
							| 9 |  | eqid |  |-  ( Sect ` C ) = ( Sect ` C ) | 
						
							| 10 | 2 6 8 4 5 9 | isinv |  |-  ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` X ) = ( Base ` X ) | 
						
							| 12 | 1 2 3 4 5 11 9 | rngcsectALTV |  |-  ( ph -> ( F ( X ( Sect ` C ) Y ) G <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) | 
						
							| 13 |  | df-3an |  |-  ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) | 
						
							| 14 | 12 13 | bitrdi |  |-  ( ph -> ( F ( X ( Sect ` C ) Y ) G <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 16 | 1 2 3 5 4 15 9 | rngcsectALTV |  |-  ( ph -> ( G ( Y ( Sect ` C ) X ) F <-> ( G e. ( Y RngHom X ) /\ F e. ( X RngHom Y ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) | 
						
							| 17 |  | 3ancoma |  |-  ( ( G e. ( Y RngHom X ) /\ F e. ( X RngHom Y ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) | 
						
							| 18 |  | df-3an |  |-  ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) | 
						
							| 19 | 17 18 | bitri |  |-  ( ( G e. ( Y RngHom X ) /\ F e. ( X RngHom Y ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) | 
						
							| 20 | 16 19 | bitrdi |  |-  ( ph -> ( G ( Y ( Sect ` C ) X ) F <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) | 
						
							| 21 | 14 20 | anbi12d |  |-  ( ph -> ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) <-> ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) ) | 
						
							| 22 |  | anandi |  |-  ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) <-> ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) | 
						
							| 23 | 21 22 | bitrdi |  |-  ( ph -> ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) <-> ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) ) | 
						
							| 24 |  | simplrl |  |-  ( ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> F e. ( X RngHom Y ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> F e. ( X RngHom Y ) ) | 
						
							| 26 | 11 15 | rnghmf |  |-  ( F e. ( X RngHom Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) | 
						
							| 27 | 15 11 | rnghmf |  |-  ( G e. ( Y RngHom X ) -> G : ( Base ` Y ) --> ( Base ` X ) ) | 
						
							| 28 | 26 27 | anim12i |  |-  ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) -> ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) ) | 
						
							| 29 | 28 | ad2antlr |  |-  ( ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) ) | 
						
							| 30 |  | simpr |  |-  ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) -> ( F o. G ) = ( _I |` ( Base ` Y ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( F o. G ) = ( _I |` ( Base ` Y ) ) ) | 
						
							| 32 |  | simpr |  |-  ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) -> ( G o. F ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 33 | 32 | ad2antrl |  |-  ( ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( G o. F ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 34 | 29 31 33 | jca32 |  |-  ( ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) | 
						
							| 36 |  | fcof1o |  |-  ( ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) -> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ `' F = G ) ) | 
						
							| 37 |  | eqcom |  |-  ( `' F = G <-> G = `' F ) | 
						
							| 38 | 37 | anbi2i |  |-  ( ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ `' F = G ) <-> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) | 
						
							| 39 | 36 38 | sylib |  |-  ( ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) -> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) | 
						
							| 40 | 35 39 | syl |  |-  ( ( ph /\ ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) | 
						
							| 41 |  | anass |  |-  ( ( ( F e. ( X RngHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) <-> ( F e. ( X RngHom Y ) /\ ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) ) | 
						
							| 42 | 25 40 41 | sylanbrc |  |-  ( ( ph /\ ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( ( F e. ( X RngHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) ) | 
						
							| 43 | 11 15 | isrngim2 |  |-  ( ( X e. B /\ Y e. B ) -> ( F e. ( X RngIso Y ) <-> ( F e. ( X RngHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) ) | 
						
							| 44 | 4 5 43 | syl2anc |  |-  ( ph -> ( F e. ( X RngIso Y ) <-> ( F e. ( X RngHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) ) | 
						
							| 45 | 44 | anbi1d |  |-  ( ph -> ( ( F e. ( X RngIso Y ) /\ G = `' F ) <-> ( ( F e. ( X RngHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( ( F e. ( X RngIso Y ) /\ G = `' F ) <-> ( ( F e. ( X RngHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) ) ) | 
						
							| 47 | 42 46 | mpbird |  |-  ( ( ph /\ ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( F e. ( X RngIso Y ) /\ G = `' F ) ) | 
						
							| 48 | 11 15 | rngimrnghm |  |-  ( F e. ( X RngIso Y ) -> F e. ( X RngHom Y ) ) | 
						
							| 49 | 48 | ad2antrl |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> F e. ( X RngHom Y ) ) | 
						
							| 50 |  | isrngim |  |-  ( ( X e. B /\ Y e. B ) -> ( F e. ( X RngIso Y ) <-> ( F e. ( X RngHom Y ) /\ `' F e. ( Y RngHom X ) ) ) ) | 
						
							| 51 | 4 5 50 | syl2anc |  |-  ( ph -> ( F e. ( X RngIso Y ) <-> ( F e. ( X RngHom Y ) /\ `' F e. ( Y RngHom X ) ) ) ) | 
						
							| 52 |  | eleq1 |  |-  ( `' F = G -> ( `' F e. ( Y RngHom X ) <-> G e. ( Y RngHom X ) ) ) | 
						
							| 53 | 52 | eqcoms |  |-  ( G = `' F -> ( `' F e. ( Y RngHom X ) <-> G e. ( Y RngHom X ) ) ) | 
						
							| 54 | 53 | anbi2d |  |-  ( G = `' F -> ( ( F e. ( X RngHom Y ) /\ `' F e. ( Y RngHom X ) ) <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) ) | 
						
							| 55 | 51 54 | sylan9bbr |  |-  ( ( G = `' F /\ ph ) -> ( F e. ( X RngIso Y ) <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) ) | 
						
							| 56 |  | simpr |  |-  ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) -> G e. ( Y RngHom X ) ) | 
						
							| 57 | 55 56 | biimtrdi |  |-  ( ( G = `' F /\ ph ) -> ( F e. ( X RngIso Y ) -> G e. ( Y RngHom X ) ) ) | 
						
							| 58 | 57 | com12 |  |-  ( F e. ( X RngIso Y ) -> ( ( G = `' F /\ ph ) -> G e. ( Y RngHom X ) ) ) | 
						
							| 59 | 58 | expdimp |  |-  ( ( F e. ( X RngIso Y ) /\ G = `' F ) -> ( ph -> G e. ( Y RngHom X ) ) ) | 
						
							| 60 | 59 | impcom |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> G e. ( Y RngHom X ) ) | 
						
							| 61 |  | coeq1 |  |-  ( G = `' F -> ( G o. F ) = ( `' F o. F ) ) | 
						
							| 62 | 61 | ad2antll |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( G o. F ) = ( `' F o. F ) ) | 
						
							| 63 | 11 15 | rngimf1o |  |-  ( F e. ( X RngIso Y ) -> F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) | 
						
							| 64 | 63 | ad2antrl |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) | 
						
							| 65 |  | f1ococnv1 |  |-  ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) -> ( `' F o. F ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( `' F o. F ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 67 | 62 66 | eqtrd |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( G o. F ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 68 | 49 60 67 | jca31 |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) | 
						
							| 69 | 51 | biimpcd |  |-  ( F e. ( X RngIso Y ) -> ( ph -> ( F e. ( X RngHom Y ) /\ `' F e. ( Y RngHom X ) ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( F e. ( X RngIso Y ) /\ G = `' F ) -> ( ph -> ( F e. ( X RngHom Y ) /\ `' F e. ( Y RngHom X ) ) ) ) | 
						
							| 71 | 70 | impcom |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( F e. ( X RngHom Y ) /\ `' F e. ( Y RngHom X ) ) ) | 
						
							| 72 |  | eleq1 |  |-  ( G = `' F -> ( G e. ( Y RngHom X ) <-> `' F e. ( Y RngHom X ) ) ) | 
						
							| 73 | 72 | ad2antll |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( G e. ( Y RngHom X ) <-> `' F e. ( Y RngHom X ) ) ) | 
						
							| 74 | 73 | anbi2d |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) <-> ( F e. ( X RngHom Y ) /\ `' F e. ( Y RngHom X ) ) ) ) | 
						
							| 75 | 71 74 | mpbird |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) | 
						
							| 76 |  | coeq2 |  |-  ( G = `' F -> ( F o. G ) = ( F o. `' F ) ) | 
						
							| 77 | 76 | ad2antll |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( F o. G ) = ( F o. `' F ) ) | 
						
							| 78 |  | f1ococnv2 |  |-  ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) -> ( F o. `' F ) = ( _I |` ( Base ` Y ) ) ) | 
						
							| 79 | 64 78 | syl |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( F o. `' F ) = ( _I |` ( Base ` Y ) ) ) | 
						
							| 80 | 77 79 | eqtrd |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( F o. G ) = ( _I |` ( Base ` Y ) ) ) | 
						
							| 81 | 75 67 80 | jca31 |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) | 
						
							| 82 | 68 75 81 | jca31 |  |-  ( ( ph /\ ( F e. ( X RngIso Y ) /\ G = `' F ) ) -> ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) | 
						
							| 83 | 47 82 | impbida |  |-  ( ph -> ( ( ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) /\ ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) <-> ( F e. ( X RngIso Y ) /\ G = `' F ) ) ) | 
						
							| 84 | 10 23 83 | 3bitrd |  |-  ( ph -> ( F ( X N Y ) G <-> ( F e. ( X RngIso Y ) /\ G = `' F ) ) ) |