Metamath Proof Explorer


Theorem rngcidALTV

Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngccatALTV.c C = RngCatALTV U
rngcidALTV.b B = Base C
rngcidALTV.o 1 ˙ = Id C
rngcidALTV.u φ U V
rngcidALTV.x φ X B
rngcidALTV.s S = Base X
Assertion rngcidALTV φ 1 ˙ X = I S

Proof

Step Hyp Ref Expression
1 rngccatALTV.c C = RngCatALTV U
2 rngcidALTV.b B = Base C
3 rngcidALTV.o 1 ˙ = Id C
4 rngcidALTV.u φ U V
5 rngcidALTV.x φ X B
6 rngcidALTV.s S = Base X
7 1 2 rngccatidALTV U V C Cat Id C = x B I Base x
8 4 7 syl φ C Cat Id C = x B I Base x
9 8 simprd φ Id C = x B I Base x
10 3 9 syl5eq φ 1 ˙ = x B I Base x
11 fveq2 x = X Base x = Base X
12 11 adantl φ x = X Base x = Base X
13 12 reseq2d φ x = X I Base x = I Base X
14 fvex Base X V
15 resiexg Base X V I Base X V
16 14 15 mp1i φ I Base X V
17 10 13 5 16 fvmptd φ 1 ˙ X = I Base X
18 6 reseq2i I S = I Base X
19 17 18 eqtr4di φ 1 ˙ X = I S