| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngccatALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 2 |  | rngcidALTV.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | rngcidALTV.o | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 4 |  | rngcidALTV.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 5 |  | rngcidALTV.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | rngcidALTV.s | ⊢ 𝑆  =  ( Base ‘ 𝑋 ) | 
						
							| 7 | 1 2 | rngccatidALTV | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝐶  ∈  Cat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( 𝜑  →  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 3 9 | eqtrid | ⊢ ( 𝜑  →   1   =  ( 𝑥  ∈  𝐵  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑋 ) ) | 
						
							| 13 | 12 | reseq2d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  (  I   ↾  ( Base ‘ 𝑥 ) )  =  (  I   ↾  ( Base ‘ 𝑋 ) ) ) | 
						
							| 14 |  | fvex | ⊢ ( Base ‘ 𝑋 )  ∈  V | 
						
							| 15 |  | resiexg | ⊢ ( ( Base ‘ 𝑋 )  ∈  V  →  (  I   ↾  ( Base ‘ 𝑋 ) )  ∈  V ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝜑  →  (  I   ↾  ( Base ‘ 𝑋 ) )  ∈  V ) | 
						
							| 17 | 10 13 5 16 | fvmptd | ⊢ ( 𝜑  →  (  1  ‘ 𝑋 )  =  (  I   ↾  ( Base ‘ 𝑋 ) ) ) | 
						
							| 18 | 6 | reseq2i | ⊢ (  I   ↾  𝑆 )  =  (  I   ↾  ( Base ‘ 𝑋 ) ) | 
						
							| 19 | 17 18 | eqtr4di | ⊢ ( 𝜑  →  (  1  ‘ 𝑋 )  =  (  I   ↾  𝑆 ) ) |