Step |
Hyp |
Ref |
Expression |
1 |
|
rngccatALTV.c |
⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) |
2 |
|
rngcidALTV.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
rngcidALTV.o |
⊢ 1 = ( Id ‘ 𝐶 ) |
4 |
|
rngcidALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
5 |
|
rngcidALTV.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
rngcidALTV.s |
⊢ 𝑆 = ( Base ‘ 𝑋 ) |
7 |
1 2
|
rngccatidALTV |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |
9 |
8
|
simprd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
10 |
3 9
|
syl5eq |
⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝐵 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
13 |
12
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( I ↾ ( Base ‘ 𝑥 ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
14 |
|
fvex |
⊢ ( Base ‘ 𝑋 ) ∈ V |
15 |
|
resiexg |
⊢ ( ( Base ‘ 𝑋 ) ∈ V → ( I ↾ ( Base ‘ 𝑋 ) ) ∈ V ) |
16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑋 ) ) ∈ V ) |
17 |
10 13 5 16
|
fvmptd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
18 |
6
|
reseq2i |
⊢ ( I ↾ 𝑆 ) = ( I ↾ ( Base ‘ 𝑋 ) ) |
19 |
17 18
|
eqtr4di |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ 𝑆 ) ) |