| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngccatALTV.c |  |-  C = ( RngCatALTV ` U ) | 
						
							| 2 |  | rngcidALTV.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | rngcidALTV.o |  |-  .1. = ( Id ` C ) | 
						
							| 4 |  | rngcidALTV.u |  |-  ( ph -> U e. V ) | 
						
							| 5 |  | rngcidALTV.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | rngcidALTV.s |  |-  S = ( Base ` X ) | 
						
							| 7 | 1 2 | rngccatidALTV |  |-  ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) ) | 
						
							| 9 | 8 | simprd |  |-  ( ph -> ( Id ` C ) = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) | 
						
							| 10 | 3 9 | eqtrid |  |-  ( ph -> .1. = ( x e. B |-> ( _I |` ( Base ` x ) ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( x = X -> ( Base ` x ) = ( Base ` X ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ x = X ) -> ( Base ` x ) = ( Base ` X ) ) | 
						
							| 13 | 12 | reseq2d |  |-  ( ( ph /\ x = X ) -> ( _I |` ( Base ` x ) ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 14 |  | fvex |  |-  ( Base ` X ) e. _V | 
						
							| 15 |  | resiexg |  |-  ( ( Base ` X ) e. _V -> ( _I |` ( Base ` X ) ) e. _V ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( ph -> ( _I |` ( Base ` X ) ) e. _V ) | 
						
							| 17 | 10 13 5 16 | fvmptd |  |-  ( ph -> ( .1. ` X ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 18 | 6 | reseq2i |  |-  ( _I |` S ) = ( _I |` ( Base ` X ) ) | 
						
							| 19 | 17 18 | eqtr4di |  |-  ( ph -> ( .1. ` X ) = ( _I |` S ) ) |