Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlabl.l |
|- L = ( LIdeal ` R ) |
2 |
|
rnglidlabl.i |
|- I = ( R |`s U ) |
3 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
4 |
3
|
3ad2ant1 |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> R e. Abel ) |
5 |
|
simp3 |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> U e. ( SubGrp ` R ) ) |
6 |
2
|
subgabl |
|- ( ( R e. Abel /\ U e. ( SubGrp ` R ) ) -> I e. Abel ) |
7 |
4 5 6
|
syl2anc |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> I e. Abel ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
8
|
subg0cl |
|- ( U e. ( SubGrp ` R ) -> ( 0g ` R ) e. U ) |
10 |
1 2 8
|
rnglidlmsgrp |
|- ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) |
11 |
9 10
|
syl3an3 |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) |
12 |
|
simpl1 |
|- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> R e. Rng ) |
13 |
1 2
|
lidlssbas |
|- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
14 |
13
|
sseld |
|- ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
15 |
13
|
sseld |
|- ( U e. L -> ( b e. ( Base ` I ) -> b e. ( Base ` R ) ) ) |
16 |
13
|
sseld |
|- ( U e. L -> ( c e. ( Base ` I ) -> c e. ( Base ` R ) ) ) |
17 |
14 15 16
|
3anim123d |
|- ( U e. L -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
18 |
17
|
3ad2ant2 |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
19 |
18
|
imp |
|- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) |
20 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
21 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
22 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
23 |
20 21 22
|
rngdi |
|- ( ( R e. Rng /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
24 |
12 19 23
|
syl2anc |
|- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
25 |
20 21 22
|
rngdir |
|- ( ( R e. Rng /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
26 |
12 19 25
|
syl2anc |
|- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
27 |
2 22
|
ressmulr |
|- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
28 |
27
|
eqcomd |
|- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
29 |
|
eqidd |
|- ( U e. L -> a = a ) |
30 |
2 21
|
ressplusg |
|- ( U e. L -> ( +g ` R ) = ( +g ` I ) ) |
31 |
30
|
eqcomd |
|- ( U e. L -> ( +g ` I ) = ( +g ` R ) ) |
32 |
31
|
oveqd |
|- ( U e. L -> ( b ( +g ` I ) c ) = ( b ( +g ` R ) c ) ) |
33 |
28 29 32
|
oveq123d |
|- ( U e. L -> ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( a ( .r ` R ) ( b ( +g ` R ) c ) ) ) |
34 |
28
|
oveqd |
|- ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
35 |
28
|
oveqd |
|- ( U e. L -> ( a ( .r ` I ) c ) = ( a ( .r ` R ) c ) ) |
36 |
31 34 35
|
oveq123d |
|- ( U e. L -> ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) |
37 |
33 36
|
eqeq12d |
|- ( U e. L -> ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) <-> ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) ) ) |
38 |
31
|
oveqd |
|- ( U e. L -> ( a ( +g ` I ) b ) = ( a ( +g ` R ) b ) ) |
39 |
|
eqidd |
|- ( U e. L -> c = c ) |
40 |
28 38 39
|
oveq123d |
|- ( U e. L -> ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( +g ` R ) b ) ( .r ` R ) c ) ) |
41 |
28
|
oveqd |
|- ( U e. L -> ( b ( .r ` I ) c ) = ( b ( .r ` R ) c ) ) |
42 |
31 35 41
|
oveq123d |
|- ( U e. L -> ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) |
43 |
40 42
|
eqeq12d |
|- ( U e. L -> ( ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) |
44 |
37 43
|
anbi12d |
|- ( U e. L -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
45 |
44
|
3ad2ant2 |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
46 |
45
|
adantr |
|- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) <-> ( ( a ( .r ` R ) ( b ( +g ` R ) c ) ) = ( ( a ( .r ` R ) b ) ( +g ` R ) ( a ( .r ` R ) c ) ) /\ ( ( a ( +g ` R ) b ) ( .r ` R ) c ) = ( ( a ( .r ` R ) c ) ( +g ` R ) ( b ( .r ` R ) c ) ) ) ) ) |
47 |
24 26 46
|
mpbir2and |
|- ( ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) |
48 |
47
|
ralrimivvva |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) |
49 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
50 |
|
eqid |
|- ( mulGrp ` I ) = ( mulGrp ` I ) |
51 |
|
eqid |
|- ( +g ` I ) = ( +g ` I ) |
52 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
53 |
49 50 51 52
|
isrng |
|- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) |
54 |
7 11 48 53
|
syl3anbrc |
|- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> I e. Rng ) |