Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun ( ( M Sat E ) ` suc N ) ) |
2 |
|
simpr |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( M e. V /\ E e. W ) ) |
3 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
4 |
3
|
ancri |
|- ( N e. _om -> ( suc N e. _om /\ N e. _om ) ) |
5 |
4
|
adantr |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( suc N e. _om /\ N e. _om ) ) |
6 |
|
sssucid |
|- N C_ suc N |
7 |
6
|
a1i |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> N C_ suc N ) |
8 |
|
eqid |
|- ( M Sat E ) = ( M Sat E ) |
9 |
8
|
satfsschain |
|- ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) -> ( N C_ suc N -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) |
10 |
9
|
imp |
|- ( ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) /\ N C_ suc N ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) |
11 |
2 5 7 10
|
syl21anc |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) |
12 |
|
eqid |
|- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
13 |
|
eqid |
|- { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
14 |
8 12 13
|
satffunlem2lem1 |
|- ( ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) |
15 |
14
|
expcom |
|- ( ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) -> ( Fun ( ( M Sat E ) ` suc N ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
16 |
11 15
|
syl |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc N ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
17 |
16
|
imp |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) |
18 |
8 12 13
|
satffunlem2lem2 |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> ( dom ( ( M Sat E ) ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) = (/) ) |
19 |
|
funun |
|- ( ( ( Fun ( ( M Sat E ) ` suc N ) /\ Fun { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) /\ ( dom ( ( M Sat E ) ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) = (/) ) -> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
20 |
1 17 18 19
|
syl21anc |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
21 |
|
simpl |
|- ( ( M e. V /\ E e. W ) -> M e. V ) |
22 |
|
simpr |
|- ( ( M e. V /\ E e. W ) -> E e. W ) |
23 |
|
simpl |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> N e. _om ) |
24 |
8 12 13
|
satfvsucsuc |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M Sat E ) ` suc suc N ) = ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
25 |
21 22 23 24
|
syl2an23an |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( M Sat E ) ` suc suc N ) = ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) |
26 |
25
|
funeqd |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc suc N ) <-> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) ) |
27 |
26
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> ( Fun ( ( M Sat E ) ` suc suc N ) <-> Fun ( ( ( M Sat E ) ` suc N ) u. { <. x , y >. | ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( E. v e. ( ( M Sat E ) ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. j e. M ( { <. i , j >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) \/ E. u e. ( ( M Sat E ) ` N ) E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) } ) ) ) |
28 |
20 27
|
mpbird |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( ( M Sat E ) ` suc N ) ) -> Fun ( ( M Sat E ) ` suc suc N ) ) |
29 |
28
|
ex |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc N ) -> Fun ( ( M Sat E ) ` suc suc N ) ) ) |