| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satffunlem2lem2.s |  |-  S = ( M Sat E ) | 
						
							| 2 |  | satffunlem2lem2.a |  |-  A = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) | 
						
							| 3 |  | satffunlem2lem2.b |  |-  B = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } | 
						
							| 4 | 1 | fveq1i |  |-  ( S ` suc N ) = ( ( M Sat E ) ` suc N ) | 
						
							| 5 | 4 | dmeqi |  |-  dom ( S ` suc N ) = dom ( ( M Sat E ) ` suc N ) | 
						
							| 6 |  | simprl |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> M e. V ) | 
						
							| 7 |  | simprr |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> E e. W ) | 
						
							| 8 |  | peano2 |  |-  ( N e. _om -> suc N e. _om ) | 
						
							| 9 | 8 | adantr |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> suc N e. _om ) | 
						
							| 10 | 6 7 9 | 3jca |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( M e. V /\ E e. W /\ suc N e. _om ) ) | 
						
							| 11 |  | satfdmfmla |  |-  ( ( M e. V /\ E e. W /\ suc N e. _om ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) | 
						
							| 14 | 5 13 | eqtrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( S ` suc N ) = ( Fmla ` suc N ) ) | 
						
							| 15 |  | ovex |  |-  ( M ^m _om ) e. _V | 
						
							| 16 | 15 | difexi |  |-  ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V | 
						
							| 17 | 2 16 | eqeltri |  |-  A e. _V | 
						
							| 18 | 17 | a1i |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> A e. _V ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) -> A. v e. ( S ` suc N ) A e. _V ) | 
						
							| 20 | 3 15 | rabex2 |  |-  B e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) /\ i e. _om ) -> B e. _V ) | 
						
							| 22 | 21 | ralrimiva |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) -> A. i e. _om B e. _V ) | 
						
							| 23 | 19 22 | jca |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) -> ( A. v e. ( S ` suc N ) A e. _V /\ A. i e. _om B e. _V ) ) | 
						
							| 24 | 23 | ralrimiva |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> A. u e. ( S ` suc N ) ( A. v e. ( S ` suc N ) A e. _V /\ A. i e. _om B e. _V ) ) | 
						
							| 25 |  | simplr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W ) ) | 
						
							| 26 | 8 | ancri |  |-  ( N e. _om -> ( suc N e. _om /\ N e. _om ) ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( suc N e. _om /\ N e. _om ) ) | 
						
							| 28 | 25 27 | jca |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) ) | 
						
							| 29 |  | sssucid |  |-  N C_ suc N | 
						
							| 30 | 1 | satfsschain |  |-  ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) -> ( N C_ suc N -> ( S ` N ) C_ ( S ` suc N ) ) ) | 
						
							| 31 | 28 29 30 | mpisyl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( S ` N ) C_ ( S ` suc N ) ) | 
						
							| 32 |  | dmopab3rexdif |  |-  ( ( A. u e. ( S ` suc N ) ( A. v e. ( S ` suc N ) A e. _V /\ A. i e. _om B e. _V ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } = { x | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) } ) | 
						
							| 33 | 24 31 32 | syl2anc |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } = { x | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) } ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) | 
						
							| 35 |  | fveqeq2 |  |-  ( w = u -> ( ( 1st ` w ) = ( 1st ` u ) <-> ( 1st ` u ) = ( 1st ` u ) ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) /\ w = u ) -> ( ( 1st ` w ) = ( 1st ` u ) <-> ( 1st ` u ) = ( 1st ` u ) ) ) | 
						
							| 37 |  | eqidd |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` u ) = ( 1st ` u ) ) | 
						
							| 38 | 34 36 37 | rspcedvd |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> E. w e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` w ) = ( 1st ` u ) ) | 
						
							| 39 | 4 | funeqi |  |-  ( Fun ( S ` suc N ) <-> Fun ( ( M Sat E ) ` suc N ) ) | 
						
							| 40 | 39 | biimpi |  |-  ( Fun ( S ` suc N ) -> Fun ( ( M Sat E ) ` suc N ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Fun ( ( M Sat E ) ` suc N ) ) | 
						
							| 42 | 1 | fveq1i |  |-  ( S ` N ) = ( ( M Sat E ) ` N ) | 
						
							| 43 | 31 42 4 | 3sstr3g |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) | 
						
							| 44 | 41 43 | jca |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) | 
						
							| 46 |  | funeldmdif |  |-  ( ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. w e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` w ) = ( 1st ` u ) ) ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. w e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` w ) = ( 1st ` u ) ) ) | 
						
							| 48 | 38 47 | mpbird |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) | 
						
							| 49 | 48 | ex |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) -> ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 50 | 4 42 | difeq12i |  |-  ( ( S ` suc N ) \ ( S ` N ) ) = ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) | 
						
							| 51 | 50 | eleq2i |  |-  ( u e. ( ( S ` suc N ) \ ( S ` N ) ) <-> u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) | 
						
							| 52 | 51 | a1i |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) <-> u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 53 | 13 | eqcomd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) | 
						
							| 54 |  | simpl |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> N e. _om ) | 
						
							| 55 | 6 7 54 | 3jca |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( M e. V /\ E e. W /\ N e. _om ) ) | 
						
							| 56 |  | satfdmfmla |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) | 
						
							| 58 | 57 | eqcomd |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fmla ` N ) = dom ( ( M Sat E ) ` N ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` N ) = dom ( ( M Sat E ) ` N ) ) | 
						
							| 60 | 53 59 | difeq12d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) = ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) | 
						
							| 61 | 60 | eleq2d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 62 | 49 52 61 | 3imtr4d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) ) | 
						
							| 63 | 62 | imp |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) | 
						
							| 65 |  | oveq1 |  |-  ( f = ( 1st ` u ) -> ( f |g g ) = ( ( 1st ` u ) |g g ) ) | 
						
							| 66 | 65 | eqeq2d |  |-  ( f = ( 1st ` u ) -> ( x = ( f |g g ) <-> x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 67 | 66 | rexbidv |  |-  ( f = ( 1st ` u ) -> ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) <-> E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 68 |  | eqidd |  |-  ( f = ( 1st ` u ) -> i = i ) | 
						
							| 69 |  | id |  |-  ( f = ( 1st ` u ) -> f = ( 1st ` u ) ) | 
						
							| 70 | 68 69 | goaleq12d |  |-  ( f = ( 1st ` u ) -> A.g i f = A.g i ( 1st ` u ) ) | 
						
							| 71 | 70 | eqeq2d |  |-  ( f = ( 1st ` u ) -> ( x = A.g i f <-> x = A.g i ( 1st ` u ) ) ) | 
						
							| 72 | 71 | rexbidv |  |-  ( f = ( 1st ` u ) -> ( E. i e. _om x = A.g i f <-> E. i e. _om x = A.g i ( 1st ` u ) ) ) | 
						
							| 73 | 67 72 | orbi12d |  |-  ( f = ( 1st ` u ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) /\ f = ( 1st ` u ) ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 75 | 6 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> M e. V ) | 
						
							| 76 | 7 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> E e. W ) | 
						
							| 77 | 8 | ad2antrr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> suc N e. _om ) | 
						
							| 78 | 75 76 77 | 3jca |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W /\ suc N e. _om ) ) | 
						
							| 79 |  | satfrel |  |-  ( ( M e. V /\ E e. W /\ suc N e. _om ) -> Rel ( ( M Sat E ) ` suc N ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( ( M Sat E ) ` suc N ) ) | 
						
							| 81 | 4 | releqi |  |-  ( Rel ( S ` suc N ) <-> Rel ( ( M Sat E ) ` suc N ) ) | 
						
							| 82 | 80 81 | sylibr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( S ` suc N ) ) | 
						
							| 83 |  | 1stdm |  |-  ( ( Rel ( S ` suc N ) /\ v e. ( S ` suc N ) ) -> ( 1st ` v ) e. dom ( S ` suc N ) ) | 
						
							| 84 | 82 83 | sylan |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> ( 1st ` v ) e. dom ( S ` suc N ) ) | 
						
							| 85 | 14 | eqcomd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( S ` suc N ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( S ` suc N ) ) | 
						
							| 87 | 84 86 | eleqtrrd |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> ( 1st ` v ) e. ( Fmla ` suc N ) ) | 
						
							| 88 | 87 | ad4ant13 |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` v ) e. ( Fmla ` suc N ) ) | 
						
							| 89 |  | oveq2 |  |-  ( g = ( 1st ` v ) -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 90 | 89 | eqeq2d |  |-  ( g = ( 1st ` v ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ g = ( 1st ` v ) ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 92 |  | simpr |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 93 | 88 91 92 | rspcedvd |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) ) | 
						
							| 94 | 93 | rexlimdva2 |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 95 | 94 | orim1d |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 96 | 95 | imp |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) | 
						
							| 97 | 64 74 96 | rspcedvd |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) | 
						
							| 98 | 97 | rexlimdva2 |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 99 | 55 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W /\ N e. _om ) ) | 
						
							| 100 |  | satfrel |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> Rel ( ( M Sat E ) ` N ) ) | 
						
							| 101 | 99 100 | syl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( ( M Sat E ) ` N ) ) | 
						
							| 102 | 42 | releqi |  |-  ( Rel ( S ` N ) <-> Rel ( ( M Sat E ) ` N ) ) | 
						
							| 103 | 101 102 | sylibr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( S ` N ) ) | 
						
							| 104 |  | 1stdm |  |-  ( ( Rel ( S ` N ) /\ u e. ( S ` N ) ) -> ( 1st ` u ) e. dom ( S ` N ) ) | 
						
							| 105 | 103 104 | sylan |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( 1st ` u ) e. dom ( S ` N ) ) | 
						
							| 106 | 42 | dmeqi |  |-  dom ( S ` N ) = dom ( ( M Sat E ) ` N ) | 
						
							| 107 | 99 56 | syl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) | 
						
							| 108 | 106 107 | eqtrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( S ` N ) = ( Fmla ` N ) ) | 
						
							| 109 | 108 | eqcomd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` N ) = dom ( S ` N ) ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( Fmla ` N ) = dom ( S ` N ) ) | 
						
							| 111 | 105 110 | eleqtrrd |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( 1st ` u ) e. ( Fmla ` N ) ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` u ) e. ( Fmla ` N ) ) | 
						
							| 113 | 66 | rexbidv |  |-  ( f = ( 1st ` u ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ f = ( 1st ` u ) ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 115 |  | simpr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) | 
						
							| 116 |  | fveqeq2 |  |-  ( t = v -> ( ( 1st ` t ) = ( 1st ` v ) <-> ( 1st ` v ) = ( 1st ` v ) ) ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) /\ t = v ) -> ( ( 1st ` t ) = ( 1st ` v ) <-> ( 1st ` v ) = ( 1st ` v ) ) ) | 
						
							| 118 |  | eqidd |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` v ) = ( 1st ` v ) ) | 
						
							| 119 | 115 117 118 | rspcedvd |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> E. t e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` t ) = ( 1st ` v ) ) | 
						
							| 120 | 44 | adantr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) | 
						
							| 121 |  | funeldmdif |  |-  ( ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. t e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` t ) = ( 1st ` v ) ) ) | 
						
							| 122 | 120 121 | syl |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. t e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` t ) = ( 1st ` v ) ) ) | 
						
							| 123 | 119 122 | mpbird |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) | 
						
							| 124 | 123 | ex |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) -> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 125 | 50 | eleq2i |  |-  ( v e. ( ( S ` suc N ) \ ( S ` N ) ) <-> v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) | 
						
							| 126 | 125 | a1i |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( v e. ( ( S ` suc N ) \ ( S ` N ) ) <-> v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 127 | 12 | eqcomd |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) | 
						
							| 128 | 127 58 | difeq12d |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) = ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) | 
						
							| 129 | 128 | eleq2d |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 131 | 124 126 130 | 3imtr4d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( v e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( v e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) ) | 
						
							| 133 | 132 | imp |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) | 
						
							| 134 | 133 | adantr |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) | 
						
							| 135 | 90 | adantl |  |-  ( ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ g = ( 1st ` v ) ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 136 |  | simpr |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 137 | 134 135 136 | rspcedvd |  |-  ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) | 
						
							| 138 | 137 | r19.29an |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) | 
						
							| 139 | 112 114 138 | rspcedvd |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) | 
						
							| 140 | 139 | rexlimdva2 |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) | 
						
							| 141 | 98 140 | orim12d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) ) | 
						
							| 142 | 10 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W /\ suc N e. _om ) ) | 
						
							| 143 | 11 | eqcomd |  |-  ( ( M e. V /\ E e. W /\ suc N e. _om ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) | 
						
							| 144 | 142 143 | syl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) | 
						
							| 145 | 107 | eqcomd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` N ) = dom ( ( M Sat E ) ` N ) ) | 
						
							| 146 | 144 145 | difeq12d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) = ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) | 
						
							| 147 | 146 | eleq2d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> f e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 148 |  | eqid |  |-  ( M Sat E ) = ( M Sat E ) | 
						
							| 149 | 148 | satfsschain |  |-  ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) -> ( N C_ suc N -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) | 
						
							| 150 | 28 29 149 | mpisyl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) | 
						
							| 151 |  | releldmdifi |  |-  ( ( Rel ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( f e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f ) ) | 
						
							| 152 | 80 150 151 | syl2anc |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f ) ) | 
						
							| 153 | 147 152 | sylbid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f ) ) | 
						
							| 154 | 50 | eqcomi |  |-  ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) = ( ( S ` suc N ) \ ( S ` N ) ) | 
						
							| 155 | 154 | rexeqi |  |-  ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f <-> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f ) | 
						
							| 156 |  | r19.41v |  |-  ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) <-> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 157 |  | oveq1 |  |-  ( ( 1st ` u ) = f -> ( ( 1st ` u ) |g g ) = ( f |g g ) ) | 
						
							| 158 | 157 | eqeq2d |  |-  ( ( 1st ` u ) = f -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( f |g g ) ) ) | 
						
							| 159 | 158 | rexbidv |  |-  ( ( 1st ` u ) = f -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( Fmla ` suc N ) x = ( f |g g ) ) ) | 
						
							| 160 |  | eqidd |  |-  ( ( 1st ` u ) = f -> i = i ) | 
						
							| 161 |  | id |  |-  ( ( 1st ` u ) = f -> ( 1st ` u ) = f ) | 
						
							| 162 | 160 161 | goaleq12d |  |-  ( ( 1st ` u ) = f -> A.g i ( 1st ` u ) = A.g i f ) | 
						
							| 163 | 162 | eqeq2d |  |-  ( ( 1st ` u ) = f -> ( x = A.g i ( 1st ` u ) <-> x = A.g i f ) ) | 
						
							| 164 | 163 | rexbidv |  |-  ( ( 1st ` u ) = f -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om x = A.g i f ) ) | 
						
							| 165 | 159 164 | orbi12d |  |-  ( ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 166 | 165 | adantl |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) | 
						
							| 167 | 142 11 | syl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) | 
						
							| 168 | 167 | eqcomd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) | 
						
							| 169 | 168 | eleq2d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( Fmla ` suc N ) <-> g e. dom ( ( M Sat E ) ` suc N ) ) ) | 
						
							| 170 |  | releldm2 |  |-  ( Rel ( ( M Sat E ) ` suc N ) -> ( g e. dom ( ( M Sat E ) ` suc N ) <-> E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g ) ) | 
						
							| 171 | 80 170 | syl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. dom ( ( M Sat E ) ` suc N ) <-> E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g ) ) | 
						
							| 172 | 169 171 | bitrd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( Fmla ` suc N ) <-> E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g ) ) | 
						
							| 173 |  | r19.41v |  |-  ( E. v e. ( ( M Sat E ) ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) <-> ( E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 174 | 1 | eqcomi |  |-  ( M Sat E ) = S | 
						
							| 175 | 174 | fveq1i |  |-  ( ( M Sat E ) ` suc N ) = ( S ` suc N ) | 
						
							| 176 | 175 | rexeqi |  |-  ( E. v e. ( ( M Sat E ) ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) <-> E. v e. ( S ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) ) | 
						
							| 177 | 89 | eqcoms |  |-  ( ( 1st ` v ) = g -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 178 | 177 | eqeq2d |  |-  ( ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 179 | 178 | biimpa |  |-  ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 180 | 179 | a1i |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 181 | 180 | reximdv |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( S ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 182 | 176 181 | biimtrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( M Sat E ) ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 183 | 173 182 | biimtrrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 184 | 183 | expd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 185 | 172 184 | sylbid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( Fmla ` suc N ) -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 186 | 185 | rexlimdv |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 187 | 186 | ad2antrr |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 188 | 187 | orim1d |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 189 | 166 188 | sylbird |  |-  ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 190 | 189 | expimpd |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 191 | 190 | reximdva |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 192 | 156 191 | biimtrrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 193 | 192 | expd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) | 
						
							| 194 | 155 193 | biimtrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) | 
						
							| 195 | 153 194 | syld |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) | 
						
							| 196 | 195 | rexlimdv |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 197 | 145 | eleq2d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( Fmla ` N ) <-> f e. dom ( ( M Sat E ) ` N ) ) ) | 
						
							| 198 | 55 100 | syl |  |-  ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> Rel ( ( M Sat E ) ` N ) ) | 
						
							| 199 | 198 | adantr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( ( M Sat E ) ` N ) ) | 
						
							| 200 |  | releldm2 |  |-  ( Rel ( ( M Sat E ) ` N ) -> ( f e. dom ( ( M Sat E ) ` N ) <-> E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f ) ) | 
						
							| 201 | 199 200 | syl |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. dom ( ( M Sat E ) ` N ) <-> E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f ) ) | 
						
							| 202 | 197 201 | bitrd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( Fmla ` N ) <-> E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f ) ) | 
						
							| 203 |  | r19.41v |  |-  ( E. u e. ( ( M Sat E ) ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) <-> ( E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) | 
						
							| 204 | 42 | eqcomi |  |-  ( ( M Sat E ) ` N ) = ( S ` N ) | 
						
							| 205 | 204 | rexeqi |  |-  ( E. u e. ( ( M Sat E ) ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) <-> E. u e. ( S ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) | 
						
							| 206 | 158 | rexbidv |  |-  ( ( 1st ` u ) = f -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) | 
						
							| 207 | 206 | adantl |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) | 
						
							| 208 | 146 | eleq2d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> g e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 209 |  | releldmdifi |  |-  ( ( Rel ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( g e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g ) ) | 
						
							| 210 | 80 150 209 | syl2anc |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g ) ) | 
						
							| 211 | 208 210 | sylbid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g ) ) | 
						
							| 212 | 154 | rexeqi |  |-  ( E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g <-> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g ) | 
						
							| 213 | 178 | biimpcd |  |-  ( x = ( ( 1st ` u ) |g g ) -> ( ( 1st ` v ) = g -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 214 | 213 | adantl |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g g ) ) -> ( ( 1st ` v ) = g -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 215 | 214 | reximdv |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g g ) ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 216 | 215 | ex |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( x = ( ( 1st ` u ) |g g ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 217 | 216 | com23 |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 218 | 212 217 | biimtrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 219 | 211 218 | syld |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 220 | 219 | rexlimdv |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 221 | 220 | adantr |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 222 | 207 221 | sylbird |  |-  ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 223 | 222 | expimpd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 224 | 223 | reximdv |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( S ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 225 | 205 224 | biimtrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 226 | 203 225 | biimtrrid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 227 | 226 | expd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 228 | 202 227 | sylbid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( Fmla ` N ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 229 | 228 | rexlimdv |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 230 | 196 229 | orim12d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) | 
						
							| 231 | 141 230 | impbid |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) <-> ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) ) | 
						
							| 232 | 231 | abbidv |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> { x | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) } = { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) | 
						
							| 233 | 33 232 | eqtrd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } = { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) | 
						
							| 234 | 14 233 | ineq12d |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( dom ( S ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) = ( ( Fmla ` suc N ) i^i { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) ) | 
						
							| 235 |  | fmlasucdisj |  |-  ( N e. _om -> ( ( Fmla ` suc N ) i^i { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) = (/) ) | 
						
							| 236 | 235 | ad2antrr |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( Fmla ` suc N ) i^i { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) = (/) ) | 
						
							| 237 | 234 236 | eqtrd |  |-  ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( dom ( S ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) = (/) ) |