Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
|- ( C e. ( dom A \ dom B ) <-> ( C e. dom A /\ -. C e. dom B ) ) |
2 |
|
releldm2 |
|- ( Rel A -> ( C e. dom A <-> E. x e. A ( 1st ` x ) = C ) ) |
3 |
2
|
adantr |
|- ( ( Rel A /\ B C_ A ) -> ( C e. dom A <-> E. x e. A ( 1st ` x ) = C ) ) |
4 |
3
|
anbi1d |
|- ( ( Rel A /\ B C_ A ) -> ( ( C e. dom A /\ -. C e. dom B ) <-> ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) ) |
5 |
1 4
|
bitrid |
|- ( ( Rel A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) <-> ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) ) |
6 |
|
simprl |
|- ( ( ( Rel A /\ B C_ A ) /\ ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) -> E. x e. A ( 1st ` x ) = C ) |
7 |
|
relss |
|- ( B C_ A -> ( Rel A -> Rel B ) ) |
8 |
7
|
impcom |
|- ( ( Rel A /\ B C_ A ) -> Rel B ) |
9 |
|
1stdm |
|- ( ( Rel B /\ x e. B ) -> ( 1st ` x ) e. dom B ) |
10 |
8 9
|
sylan |
|- ( ( ( Rel A /\ B C_ A ) /\ x e. B ) -> ( 1st ` x ) e. dom B ) |
11 |
|
eleq1 |
|- ( ( 1st ` x ) = C -> ( ( 1st ` x ) e. dom B <-> C e. dom B ) ) |
12 |
10 11
|
syl5ibcom |
|- ( ( ( Rel A /\ B C_ A ) /\ x e. B ) -> ( ( 1st ` x ) = C -> C e. dom B ) ) |
13 |
12
|
rexlimdva |
|- ( ( Rel A /\ B C_ A ) -> ( E. x e. B ( 1st ` x ) = C -> C e. dom B ) ) |
14 |
13
|
con3d |
|- ( ( Rel A /\ B C_ A ) -> ( -. C e. dom B -> -. E. x e. B ( 1st ` x ) = C ) ) |
15 |
|
ralnex |
|- ( A. x e. B -. ( 1st ` x ) = C <-> -. E. x e. B ( 1st ` x ) = C ) |
16 |
14 15
|
syl6ibr |
|- ( ( Rel A /\ B C_ A ) -> ( -. C e. dom B -> A. x e. B -. ( 1st ` x ) = C ) ) |
17 |
16
|
adantld |
|- ( ( Rel A /\ B C_ A ) -> ( ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) -> A. x e. B -. ( 1st ` x ) = C ) ) |
18 |
17
|
imp |
|- ( ( ( Rel A /\ B C_ A ) /\ ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) -> A. x e. B -. ( 1st ` x ) = C ) |
19 |
|
rexdifi |
|- ( ( E. x e. A ( 1st ` x ) = C /\ A. x e. B -. ( 1st ` x ) = C ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) |
20 |
6 18 19
|
syl2anc |
|- ( ( ( Rel A /\ B C_ A ) /\ ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) |
21 |
20
|
ex |
|- ( ( Rel A /\ B C_ A ) -> ( ( E. x e. A ( 1st ` x ) = C /\ -. C e. dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
22 |
5 21
|
sylbid |
|- ( ( Rel A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |