Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | releldmdifi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |
|
2 | releldm2 | |
|
3 | 2 | adantr | |
4 | 3 | anbi1d | |
5 | 1 4 | bitrid | |
6 | simprl | |
|
7 | relss | |
|
8 | 7 | impcom | |
9 | 1stdm | |
|
10 | 8 9 | sylan | |
11 | eleq1 | |
|
12 | 10 11 | syl5ibcom | |
13 | 12 | rexlimdva | |
14 | 13 | con3d | |
15 | ralnex | |
|
16 | 14 15 | imbitrrdi | |
17 | 16 | adantld | |
18 | 17 | imp | |
19 | rexdifi | |
|
20 | 6 18 19 | syl2anc | |
21 | 20 | ex | |
22 | 5 21 | sylbid | |