Metamath Proof Explorer


Theorem releldmdifi

Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023)

Ref Expression
Assertion releldmdifi Rel A B A C dom A dom B x A B 1 st x = C

Proof

Step Hyp Ref Expression
1 eldif C dom A dom B C dom A ¬ C dom B
2 releldm2 Rel A C dom A x A 1 st x = C
3 2 adantr Rel A B A C dom A x A 1 st x = C
4 3 anbi1d Rel A B A C dom A ¬ C dom B x A 1 st x = C ¬ C dom B
5 1 4 bitrid Rel A B A C dom A dom B x A 1 st x = C ¬ C dom B
6 simprl Rel A B A x A 1 st x = C ¬ C dom B x A 1 st x = C
7 relss B A Rel A Rel B
8 7 impcom Rel A B A Rel B
9 1stdm Rel B x B 1 st x dom B
10 8 9 sylan Rel A B A x B 1 st x dom B
11 eleq1 1 st x = C 1 st x dom B C dom B
12 10 11 syl5ibcom Rel A B A x B 1 st x = C C dom B
13 12 rexlimdva Rel A B A x B 1 st x = C C dom B
14 13 con3d Rel A B A ¬ C dom B ¬ x B 1 st x = C
15 ralnex x B ¬ 1 st x = C ¬ x B 1 st x = C
16 14 15 syl6ibr Rel A B A ¬ C dom B x B ¬ 1 st x = C
17 16 adantld Rel A B A x A 1 st x = C ¬ C dom B x B ¬ 1 st x = C
18 17 imp Rel A B A x A 1 st x = C ¬ C dom B x B ¬ 1 st x = C
19 rexdifi x A 1 st x = C x B ¬ 1 st x = C x A B 1 st x = C
20 6 18 19 syl2anc Rel A B A x A 1 st x = C ¬ C dom B x A B 1 st x = C
21 20 ex Rel A B A x A 1 st x = C ¬ C dom B x A B 1 st x = C
22 5 21 sylbid Rel A B A C dom A dom B x A B 1 st x = C