Metamath Proof Explorer


Theorem releldmdifi

Description: One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023)

Ref Expression
Assertion releldmdifi RelABACdomAdomBxAB1stx=C

Proof

Step Hyp Ref Expression
1 eldif CdomAdomBCdomA¬CdomB
2 releldm2 RelACdomAxA1stx=C
3 2 adantr RelABACdomAxA1stx=C
4 3 anbi1d RelABACdomA¬CdomBxA1stx=C¬CdomB
5 1 4 bitrid RelABACdomAdomBxA1stx=C¬CdomB
6 simprl RelABAxA1stx=C¬CdomBxA1stx=C
7 relss BARelARelB
8 7 impcom RelABARelB
9 1stdm RelBxB1stxdomB
10 8 9 sylan RelABAxB1stxdomB
11 eleq1 1stx=C1stxdomBCdomB
12 10 11 syl5ibcom RelABAxB1stx=CCdomB
13 12 rexlimdva RelABAxB1stx=CCdomB
14 13 con3d RelABA¬CdomB¬xB1stx=C
15 ralnex xB¬1stx=C¬xB1stx=C
16 14 15 imbitrrdi RelABA¬CdomBxB¬1stx=C
17 16 adantld RelABAxA1stx=C¬CdomBxB¬1stx=C
18 17 imp RelABAxA1stx=C¬CdomBxB¬1stx=C
19 rexdifi xA1stx=CxB¬1stx=CxAB1stx=C
20 6 18 19 syl2anc RelABAxA1stx=C¬CdomBxAB1stx=C
21 20 ex RelABAxA1stx=C¬CdomBxAB1stx=C
22 5 21 sylbid RelABACdomAdomBxAB1stx=C