Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
satffunlem2lem2
Next ⟩
satffunlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
satffunlem2lem2
Description:
Lemma 2 for
satffunlem2
.
(Contributed by
AV
, 27-Oct-2023)
Ref
Expression
Hypotheses
satffunlem2lem2.s
⊢
S
=
M
Sat
E
satffunlem2lem2.a
ω
⊢
A
=
M
ω
∖
2
nd
u
∩
2
nd
v
satffunlem2lem2.b
ω
ω
⊢
B
=
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
Assertion
satffunlem2lem2
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
S
suc
N
∩
dom
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
satffunlem2lem2.s
⊢
S
=
M
Sat
E
2
satffunlem2lem2.a
ω
⊢
A
=
M
ω
∖
2
nd
u
∩
2
nd
v
3
satffunlem2lem2.b
ω
ω
⊢
B
=
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
4
1
fveq1i
⊢
S
suc
N
=
M
Sat
E
suc
N
5
4
dmeqi
⊢
dom
S
suc
N
=
dom
M
Sat
E
suc
N
6
simprl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
M
∈
V
7
simprr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
E
∈
W
8
peano2
ω
ω
⊢
N
∈
ω
→
suc
N
∈
ω
9
8
adantr
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
suc
N
∈
ω
10
6
7
9
3jca
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
11
satfdmfmla
ω
⊢
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
→
dom
M
Sat
E
suc
N
=
Fmla
suc
N
12
10
11
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
dom
M
Sat
E
suc
N
=
Fmla
suc
N
13
12
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
M
Sat
E
suc
N
=
Fmla
suc
N
14
5
13
eqtrid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
S
suc
N
=
Fmla
suc
N
15
ovex
ω
⊢
M
ω
∈
V
16
15
difexi
ω
⊢
M
ω
∖
2
nd
u
∩
2
nd
v
∈
V
17
2
16
eqeltri
⊢
A
∈
V
18
17
a1i
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∧
v
∈
S
suc
N
→
A
∈
V
19
18
ralrimiva
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
→
∀
v
∈
S
suc
N
A
∈
V
20
3
15
rabex2
⊢
B
∈
V
21
20
a1i
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∧
i
∈
ω
→
B
∈
V
22
21
ralrimiva
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
→
∀
i
∈
ω
B
∈
V
23
19
22
jca
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
→
∀
v
∈
S
suc
N
A
∈
V
∧
∀
i
∈
ω
B
∈
V
24
23
ralrimiva
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∀
u
∈
S
suc
N
∀
v
∈
S
suc
N
A
∈
V
∧
∀
i
∈
ω
B
∈
V
25
simplr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
∈
V
∧
E
∈
W
26
8
ancri
ω
ω
ω
⊢
N
∈
ω
→
suc
N
∈
ω
∧
N
∈
ω
27
26
ad2antrr
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
suc
N
∈
ω
∧
N
∈
ω
28
25
27
jca
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
∧
N
∈
ω
29
sssucid
⊢
N
⊆
suc
N
30
1
satfsschain
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
∧
N
∈
ω
→
N
⊆
suc
N
→
S
N
⊆
S
suc
N
31
28
29
30
mpisyl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
S
N
⊆
S
suc
N
32
dmopab3rexdif
ω
ω
ω
⊢
∀
u
∈
S
suc
N
∀
v
∈
S
suc
N
A
∈
V
∧
∀
i
∈
ω
B
∈
V
∧
S
N
⊆
S
suc
N
→
dom
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
=
x
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
33
24
31
32
syl2anc
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
=
x
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
34
simpr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
35
fveqeq2
⊢
w
=
u
→
1
st
w
=
1
st
u
↔
1
st
u
=
1
st
u
36
35
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
∧
w
=
u
→
1
st
w
=
1
st
u
↔
1
st
u
=
1
st
u
37
eqidd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
u
=
1
st
u
38
34
36
37
rspcedvd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
∃
w
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
w
=
1
st
u
39
4
funeqi
⊢
Fun
S
suc
N
↔
Fun
M
Sat
E
suc
N
40
39
biimpi
⊢
Fun
S
suc
N
→
Fun
M
Sat
E
suc
N
41
40
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fun
M
Sat
E
suc
N
42
1
fveq1i
⊢
S
N
=
M
Sat
E
N
43
31
42
4
3sstr3g
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
Sat
E
N
⊆
M
Sat
E
suc
N
44
41
43
jca
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fun
M
Sat
E
suc
N
∧
M
Sat
E
N
⊆
M
Sat
E
suc
N
45
44
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
Fun
M
Sat
E
suc
N
∧
M
Sat
E
N
⊆
M
Sat
E
suc
N
46
funeldmdif
⊢
Fun
M
Sat
E
suc
N
∧
M
Sat
E
N
⊆
M
Sat
E
suc
N
→
1
st
u
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
↔
∃
w
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
w
=
1
st
u
47
45
46
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
u
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
↔
∃
w
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
w
=
1
st
u
48
38
47
mpbird
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
u
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
49
48
ex
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
u
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
50
4
42
difeq12i
⊢
S
suc
N
∖
S
N
=
M
Sat
E
suc
N
∖
M
Sat
E
N
51
50
eleq2i
⊢
u
∈
S
suc
N
∖
S
N
↔
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
52
51
a1i
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
u
∈
S
suc
N
∖
S
N
↔
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
53
13
eqcomd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
suc
N
=
dom
M
Sat
E
suc
N
54
simpl
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
N
∈
ω
55
6
7
54
3jca
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
M
∈
V
∧
E
∈
W
∧
N
∈
ω
56
satfdmfmla
ω
⊢
M
∈
V
∧
E
∈
W
∧
N
∈
ω
→
dom
M
Sat
E
N
=
Fmla
N
57
55
56
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
dom
M
Sat
E
N
=
Fmla
N
58
57
eqcomd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
Fmla
N
=
dom
M
Sat
E
N
59
58
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
N
=
dom
M
Sat
E
N
60
53
59
difeq12d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
suc
N
∖
Fmla
N
=
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
61
60
eleq2d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
1
st
u
∈
Fmla
suc
N
∖
Fmla
N
↔
1
st
u
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
62
49
52
61
3imtr4d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
u
∈
S
suc
N
∖
S
N
→
1
st
u
∈
Fmla
suc
N
∖
Fmla
N
63
62
imp
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
1
st
u
∈
Fmla
suc
N
∖
Fmla
N
64
63
adantr
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
1
st
u
∈
Fmla
suc
N
∖
Fmla
N
65
oveq1
⊢
f
=
1
st
u
→
f
⊼
𝑔
g
=
1
st
u
⊼
𝑔
g
66
65
eqeq2d
⊢
f
=
1
st
u
→
x
=
f
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
g
67
66
rexbidv
⊢
f
=
1
st
u
→
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
↔
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
68
eqidd
⊢
f
=
1
st
u
→
i
=
i
69
id
⊢
f
=
1
st
u
→
f
=
1
st
u
70
68
69
goaleq12d
⊢
f
=
1
st
u
→
∀
𝑔
i
f
=
∀
𝑔
i
1
st
u
71
70
eqeq2d
⊢
f
=
1
st
u
→
x
=
∀
𝑔
i
f
↔
x
=
∀
𝑔
i
1
st
u
72
71
rexbidv
ω
ω
⊢
f
=
1
st
u
→
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
73
67
72
orbi12d
ω
ω
⊢
f
=
1
st
u
→
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
74
73
adantl
ω
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
f
=
1
st
u
→
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
75
6
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
∈
V
76
7
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
E
∈
W
77
8
ad2antrr
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
suc
N
∈
ω
78
75
76
77
3jca
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
79
satfrel
ω
⊢
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
→
Rel
M
Sat
E
suc
N
80
78
79
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Rel
M
Sat
E
suc
N
81
4
releqi
⊢
Rel
S
suc
N
↔
Rel
M
Sat
E
suc
N
82
80
81
sylibr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Rel
S
suc
N
83
1stdm
⊢
Rel
S
suc
N
∧
v
∈
S
suc
N
→
1
st
v
∈
dom
S
suc
N
84
82
83
sylan
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
S
suc
N
→
1
st
v
∈
dom
S
suc
N
85
14
eqcomd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
suc
N
=
dom
S
suc
N
86
85
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
S
suc
N
→
Fmla
suc
N
=
dom
S
suc
N
87
84
86
eleqtrrd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
S
suc
N
→
1
st
v
∈
Fmla
suc
N
88
87
ad4ant13
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
1
st
v
∈
Fmla
suc
N
89
oveq2
⊢
g
=
1
st
v
→
1
st
u
⊼
𝑔
g
=
1
st
u
⊼
𝑔
1
st
v
90
89
eqeq2d
⊢
g
=
1
st
v
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
1
st
v
91
90
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
g
=
1
st
v
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
1
st
v
92
simpr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
x
=
1
st
u
⊼
𝑔
1
st
v
93
88
91
92
rspcedvd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
94
93
rexlimdva2
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
95
94
orim1d
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
96
95
imp
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
97
64
74
96
rspcedvd
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
98
97
rexlimdva2
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
99
55
adantr
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
∈
V
∧
E
∈
W
∧
N
∈
ω
100
satfrel
ω
⊢
M
∈
V
∧
E
∈
W
∧
N
∈
ω
→
Rel
M
Sat
E
N
101
99
100
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Rel
M
Sat
E
N
102
42
releqi
⊢
Rel
S
N
↔
Rel
M
Sat
E
N
103
101
102
sylibr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Rel
S
N
104
1stdm
⊢
Rel
S
N
∧
u
∈
S
N
→
1
st
u
∈
dom
S
N
105
103
104
sylan
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
→
1
st
u
∈
dom
S
N
106
42
dmeqi
⊢
dom
S
N
=
dom
M
Sat
E
N
107
99
56
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
M
Sat
E
N
=
Fmla
N
108
106
107
eqtrid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
S
N
=
Fmla
N
109
108
eqcomd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
N
=
dom
S
N
110
109
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
→
Fmla
N
=
dom
S
N
111
105
110
eleqtrrd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
→
1
st
u
∈
Fmla
N
112
111
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
→
1
st
u
∈
Fmla
N
113
66
rexbidv
⊢
f
=
1
st
u
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
↔
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
114
113
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
f
=
1
st
u
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
↔
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
115
simpr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
116
fveqeq2
⊢
t
=
v
→
1
st
t
=
1
st
v
↔
1
st
v
=
1
st
v
117
116
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
∧
t
=
v
→
1
st
t
=
1
st
v
↔
1
st
v
=
1
st
v
118
eqidd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
v
=
1
st
v
119
115
117
118
rspcedvd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
∃
t
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
t
=
1
st
v
120
44
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
Fun
M
Sat
E
suc
N
∧
M
Sat
E
N
⊆
M
Sat
E
suc
N
121
funeldmdif
⊢
Fun
M
Sat
E
suc
N
∧
M
Sat
E
N
⊆
M
Sat
E
suc
N
→
1
st
v
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
↔
∃
t
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
t
=
1
st
v
122
120
121
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
v
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
↔
∃
t
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
t
=
1
st
v
123
119
122
mpbird
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
v
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
124
123
ex
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
→
1
st
v
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
125
50
eleq2i
⊢
v
∈
S
suc
N
∖
S
N
↔
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
126
125
a1i
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
v
∈
S
suc
N
∖
S
N
↔
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
127
12
eqcomd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
Fmla
suc
N
=
dom
M
Sat
E
suc
N
128
127
58
difeq12d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
Fmla
suc
N
∖
Fmla
N
=
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
129
128
eleq2d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
1
st
v
∈
Fmla
suc
N
∖
Fmla
N
↔
1
st
v
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
130
129
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
1
st
v
∈
Fmla
suc
N
∖
Fmla
N
↔
1
st
v
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
131
124
126
130
3imtr4d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
v
∈
S
suc
N
∖
S
N
→
1
st
v
∈
Fmla
suc
N
∖
Fmla
N
132
131
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
→
v
∈
S
suc
N
∖
S
N
→
1
st
v
∈
Fmla
suc
N
∖
Fmla
N
133
132
imp
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
1
st
v
∈
Fmla
suc
N
∖
Fmla
N
134
133
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
1
st
v
∈
Fmla
suc
N
∖
Fmla
N
135
90
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
g
=
1
st
v
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
1
st
v
136
simpr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
x
=
1
st
u
⊼
𝑔
1
st
v
137
134
135
136
rspcedvd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
∧
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
138
137
r19.29an
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
139
112
114
138
rspcedvd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
N
∧
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
140
139
rexlimdva2
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
141
98
140
orim12d
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
→
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
142
10
adantr
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
143
11
eqcomd
ω
⊢
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
→
Fmla
suc
N
=
dom
M
Sat
E
suc
N
144
142
143
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
suc
N
=
dom
M
Sat
E
suc
N
145
107
eqcomd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
N
=
dom
M
Sat
E
N
146
144
145
difeq12d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
suc
N
∖
Fmla
N
=
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
147
146
eleq2d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
Fmla
suc
N
∖
Fmla
N
↔
f
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
148
eqid
⊢
M
Sat
E
=
M
Sat
E
149
148
satfsschain
ω
ω
⊢
M
∈
V
∧
E
∈
W
∧
suc
N
∈
ω
∧
N
∈
ω
→
N
⊆
suc
N
→
M
Sat
E
N
⊆
M
Sat
E
suc
N
150
28
29
149
mpisyl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
M
Sat
E
N
⊆
M
Sat
E
suc
N
151
releldmdifi
⊢
Rel
M
Sat
E
suc
N
∧
M
Sat
E
N
⊆
M
Sat
E
suc
N
→
f
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
→
∃
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
u
=
f
152
80
150
151
syl2anc
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
→
∃
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
u
=
f
153
147
152
sylbid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
Fmla
suc
N
∖
Fmla
N
→
∃
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
u
=
f
154
50
eqcomi
⊢
M
Sat
E
suc
N
∖
M
Sat
E
N
=
S
suc
N
∖
S
N
155
154
rexeqi
⊢
∃
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
u
=
f
↔
∃
u
∈
S
suc
N
∖
S
N
1
st
u
=
f
156
r19.41v
ω
ω
⊢
∃
u
∈
S
suc
N
∖
S
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
↔
∃
u
∈
S
suc
N
∖
S
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
157
oveq1
⊢
1
st
u
=
f
→
1
st
u
⊼
𝑔
g
=
f
⊼
𝑔
g
158
157
eqeq2d
⊢
1
st
u
=
f
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
f
⊼
𝑔
g
159
158
rexbidv
⊢
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
↔
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
160
eqidd
⊢
1
st
u
=
f
→
i
=
i
161
id
⊢
1
st
u
=
f
→
1
st
u
=
f
162
160
161
goaleq12d
⊢
1
st
u
=
f
→
∀
𝑔
i
1
st
u
=
∀
𝑔
i
f
163
162
eqeq2d
⊢
1
st
u
=
f
→
x
=
∀
𝑔
i
1
st
u
↔
x
=
∀
𝑔
i
f
164
163
rexbidv
ω
ω
⊢
1
st
u
=
f
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
i
∈
ω
x
=
∀
𝑔
i
f
165
159
164
orbi12d
ω
ω
⊢
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
166
165
adantl
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
↔
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
167
142
11
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
M
Sat
E
suc
N
=
Fmla
suc
N
168
167
eqcomd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
suc
N
=
dom
M
Sat
E
suc
N
169
168
eleq2d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
Fmla
suc
N
↔
g
∈
dom
M
Sat
E
suc
N
170
releldm2
⊢
Rel
M
Sat
E
suc
N
→
g
∈
dom
M
Sat
E
suc
N
↔
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
171
80
170
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
dom
M
Sat
E
suc
N
↔
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
172
169
171
bitrd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
Fmla
suc
N
↔
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
173
r19.41v
⊢
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
↔
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
174
1
eqcomi
⊢
M
Sat
E
=
S
175
174
fveq1i
⊢
M
Sat
E
suc
N
=
S
suc
N
176
175
rexeqi
⊢
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
↔
∃
v
∈
S
suc
N
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
177
89
eqcoms
⊢
1
st
v
=
g
→
1
st
u
⊼
𝑔
g
=
1
st
u
⊼
𝑔
1
st
v
178
177
eqeq2d
⊢
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
g
↔
x
=
1
st
u
⊼
𝑔
1
st
v
179
178
biimpa
⊢
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
x
=
1
st
u
⊼
𝑔
1
st
v
180
179
a1i
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
x
=
1
st
u
⊼
𝑔
1
st
v
181
180
reximdv
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
v
∈
S
suc
N
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
182
176
181
biimtrid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
183
173
182
biimtrrid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
∧
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
184
183
expd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
v
∈
M
Sat
E
suc
N
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
185
172
184
sylbid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
Fmla
suc
N
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
186
185
rexlimdv
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
187
186
ad2antrr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
188
187
orim1d
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
1
st
u
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
189
166
188
sylbird
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
190
189
expimpd
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
191
190
reximdva
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
192
156
191
biimtrrid
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
193
192
expd
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
194
155
193
biimtrid
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
195
153
194
syld
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
Fmla
suc
N
∖
Fmla
N
→
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
196
195
rexlimdv
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
197
145
eleq2d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
Fmla
N
↔
f
∈
dom
M
Sat
E
N
198
55
100
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
→
Rel
M
Sat
E
N
199
198
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Rel
M
Sat
E
N
200
releldm2
⊢
Rel
M
Sat
E
N
→
f
∈
dom
M
Sat
E
N
↔
∃
u
∈
M
Sat
E
N
1
st
u
=
f
201
199
200
syl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
dom
M
Sat
E
N
↔
∃
u
∈
M
Sat
E
N
1
st
u
=
f
202
197
201
bitrd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
Fmla
N
↔
∃
u
∈
M
Sat
E
N
1
st
u
=
f
203
r19.41v
⊢
∃
u
∈
M
Sat
E
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
↔
∃
u
∈
M
Sat
E
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
204
42
eqcomi
⊢
M
Sat
E
N
=
S
N
205
204
rexeqi
⊢
∃
u
∈
M
Sat
E
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
↔
∃
u
∈
S
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
206
158
rexbidv
⊢
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
↔
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
207
206
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
↔
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
208
146
eleq2d
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
Fmla
suc
N
∖
Fmla
N
↔
g
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
209
releldmdifi
⊢
Rel
M
Sat
E
suc
N
∧
M
Sat
E
N
⊆
M
Sat
E
suc
N
→
g
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
→
∃
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
v
=
g
210
80
150
209
syl2anc
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
dom
M
Sat
E
suc
N
∖
dom
M
Sat
E
N
→
∃
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
v
=
g
211
208
210
sylbid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
Fmla
suc
N
∖
Fmla
N
→
∃
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
v
=
g
212
154
rexeqi
⊢
∃
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
v
=
g
↔
∃
v
∈
S
suc
N
∖
S
N
1
st
v
=
g
213
178
biimpcd
⊢
x
=
1
st
u
⊼
𝑔
g
→
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
1
st
v
214
213
adantl
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
x
=
1
st
u
⊼
𝑔
g
→
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
1
st
v
215
214
reximdv
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
1
st
v
=
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
216
215
ex
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
1
st
v
=
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
217
216
com23
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
v
∈
S
suc
N
∖
S
N
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
218
212
217
biimtrid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
v
∈
M
Sat
E
suc
N
∖
M
Sat
E
N
1
st
v
=
g
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
219
211
218
syld
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
g
∈
Fmla
suc
N
∖
Fmla
N
→
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
220
219
rexlimdv
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
221
220
adantr
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
1
st
u
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
222
207
221
sylbird
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
∧
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
223
222
expimpd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
224
223
reximdv
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
225
205
224
biimtrid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
M
Sat
E
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
226
203
225
biimtrrid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
M
Sat
E
N
1
st
u
=
f
∧
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
227
226
expd
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
M
Sat
E
N
1
st
u
=
f
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
228
202
227
sylbid
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
f
∈
Fmla
N
→
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
229
228
rexlimdv
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
230
196
229
orim12d
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
231
141
230
impbid
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
↔
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
232
231
abbidv
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
x
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
=
x
|
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
233
33
232
eqtrd
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
=
x
|
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
234
14
233
ineq12d
ω
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
S
suc
N
∩
dom
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
=
Fmla
suc
N
∩
x
|
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
235
fmlasucdisj
ω
ω
⊢
N
∈
ω
→
Fmla
suc
N
∩
x
|
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
=
∅
236
235
ad2antrr
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
Fmla
suc
N
∩
x
|
∃
f
∈
Fmla
suc
N
∖
Fmla
N
∃
g
∈
Fmla
suc
N
x
=
f
⊼
𝑔
g
∨
∃
i
∈
ω
x
=
∀
𝑔
i
f
∨
∃
f
∈
Fmla
N
∃
g
∈
Fmla
suc
N
∖
Fmla
N
x
=
f
⊼
𝑔
g
=
∅
237
234
236
eqtrd
ω
ω
⊢
N
∈
ω
∧
M
∈
V
∧
E
∈
W
∧
Fun
S
suc
N
→
dom
S
suc
N
∩
dom
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
=
∅