Metamath Proof Explorer


Theorem satffunlem2lem2

Description: Lemma 2 for satffunlem2 . (Contributed by AV, 27-Oct-2023)

Ref Expression
Hypotheses satffunlem2lem2.s S=MSatE
satffunlem2lem2.a A=Mω2ndu2ndv
satffunlem2lem2.b B=aMω|zMizaωi2ndu
Assertion satffunlem2lem2 NωMVEWFunSsucNdomSsucNdomxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A=

Proof

Step Hyp Ref Expression
1 satffunlem2lem2.s S=MSatE
2 satffunlem2lem2.a A=Mω2ndu2ndv
3 satffunlem2lem2.b B=aMω|zMizaωi2ndu
4 1 fveq1i SsucN=MSatEsucN
5 4 dmeqi domSsucN=domMSatEsucN
6 simprl NωMVEWMV
7 simprr NωMVEWEW
8 peano2 NωsucNω
9 8 adantr NωMVEWsucNω
10 6 7 9 3jca NωMVEWMVEWsucNω
11 satfdmfmla MVEWsucNωdomMSatEsucN=FmlasucN
12 10 11 syl NωMVEWdomMSatEsucN=FmlasucN
13 12 adantr NωMVEWFunSsucNdomMSatEsucN=FmlasucN
14 5 13 eqtrid NωMVEWFunSsucNdomSsucN=FmlasucN
15 ovex MωV
16 15 difexi Mω2ndu2ndvV
17 2 16 eqeltri AV
18 17 a1i NωMVEWFunSsucNuSsucNvSsucNAV
19 18 ralrimiva NωMVEWFunSsucNuSsucNvSsucNAV
20 3 15 rabex2 BV
21 20 a1i NωMVEWFunSsucNuSsucNiωBV
22 21 ralrimiva NωMVEWFunSsucNuSsucNiωBV
23 19 22 jca NωMVEWFunSsucNuSsucNvSsucNAViωBV
24 23 ralrimiva NωMVEWFunSsucNuSsucNvSsucNAViωBV
25 simplr NωMVEWFunSsucNMVEW
26 8 ancri NωsucNωNω
27 26 ad2antrr NωMVEWFunSsucNsucNωNω
28 25 27 jca NωMVEWFunSsucNMVEWsucNωNω
29 sssucid NsucN
30 1 satfsschain MVEWsucNωNωNsucNSNSsucN
31 28 29 30 mpisyl NωMVEWFunSsucNSNSsucN
32 dmopab3rexdif uSsucNvSsucNAViωBVSNSsucNdomxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A=x|uSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stuuSNvSsucNSNx=1stu𝑔1stv
33 24 31 32 syl2anc NωMVEWFunSsucNdomxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A=x|uSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stuuSNvSsucNSNx=1stu𝑔1stv
34 simpr NωMVEWFunSsucNuMSatEsucNMSatENuMSatEsucNMSatEN
35 fveqeq2 w=u1stw=1stu1stu=1stu
36 35 adantl NωMVEWFunSsucNuMSatEsucNMSatENw=u1stw=1stu1stu=1stu
37 eqidd NωMVEWFunSsucNuMSatEsucNMSatEN1stu=1stu
38 34 36 37 rspcedvd NωMVEWFunSsucNuMSatEsucNMSatENwMSatEsucNMSatEN1stw=1stu
39 4 funeqi FunSsucNFunMSatEsucN
40 39 biimpi FunSsucNFunMSatEsucN
41 40 adantl NωMVEWFunSsucNFunMSatEsucN
42 1 fveq1i SN=MSatEN
43 31 42 4 3sstr3g NωMVEWFunSsucNMSatENMSatEsucN
44 41 43 jca NωMVEWFunSsucNFunMSatEsucNMSatENMSatEsucN
45 44 adantr NωMVEWFunSsucNuMSatEsucNMSatENFunMSatEsucNMSatENMSatEsucN
46 funeldmdif FunMSatEsucNMSatENMSatEsucN1studomMSatEsucNdomMSatENwMSatEsucNMSatEN1stw=1stu
47 45 46 syl NωMVEWFunSsucNuMSatEsucNMSatEN1studomMSatEsucNdomMSatENwMSatEsucNMSatEN1stw=1stu
48 38 47 mpbird NωMVEWFunSsucNuMSatEsucNMSatEN1studomMSatEsucNdomMSatEN
49 48 ex NωMVEWFunSsucNuMSatEsucNMSatEN1studomMSatEsucNdomMSatEN
50 4 42 difeq12i SsucNSN=MSatEsucNMSatEN
51 50 eleq2i uSsucNSNuMSatEsucNMSatEN
52 51 a1i NωMVEWFunSsucNuSsucNSNuMSatEsucNMSatEN
53 13 eqcomd NωMVEWFunSsucNFmlasucN=domMSatEsucN
54 simpl NωMVEWNω
55 6 7 54 3jca NωMVEWMVEWNω
56 satfdmfmla MVEWNωdomMSatEN=FmlaN
57 55 56 syl NωMVEWdomMSatEN=FmlaN
58 57 eqcomd NωMVEWFmlaN=domMSatEN
59 58 adantr NωMVEWFunSsucNFmlaN=domMSatEN
60 53 59 difeq12d NωMVEWFunSsucNFmlasucNFmlaN=domMSatEsucNdomMSatEN
61 60 eleq2d NωMVEWFunSsucN1stuFmlasucNFmlaN1studomMSatEsucNdomMSatEN
62 49 52 61 3imtr4d NωMVEWFunSsucNuSsucNSN1stuFmlasucNFmlaN
63 62 imp NωMVEWFunSsucNuSsucNSN1stuFmlasucNFmlaN
64 63 adantr NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stu1stuFmlasucNFmlaN
65 oveq1 f=1stuf𝑔g=1stu𝑔g
66 65 eqeq2d f=1stux=f𝑔gx=1stu𝑔g
67 66 rexbidv f=1stugFmlasucNx=f𝑔ggFmlasucNx=1stu𝑔g
68 eqidd f=1stui=i
69 id f=1stuf=1stu
70 68 69 goaleq12d f=1stu𝑔if=𝑔i1stu
71 70 eqeq2d f=1stux=𝑔ifx=𝑔i1stu
72 71 rexbidv f=1stuiωx=𝑔ifiωx=𝑔i1stu
73 67 72 orbi12d f=1stugFmlasucNx=f𝑔giωx=𝑔ifgFmlasucNx=1stu𝑔giωx=𝑔i1stu
74 73 adantl NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stuf=1stugFmlasucNx=f𝑔giωx=𝑔ifgFmlasucNx=1stu𝑔giωx=𝑔i1stu
75 6 adantr NωMVEWFunSsucNMV
76 7 adantr NωMVEWFunSsucNEW
77 8 ad2antrr NωMVEWFunSsucNsucNω
78 75 76 77 3jca NωMVEWFunSsucNMVEWsucNω
79 satfrel MVEWsucNωRelMSatEsucN
80 78 79 syl NωMVEWFunSsucNRelMSatEsucN
81 4 releqi RelSsucNRelMSatEsucN
82 80 81 sylibr NωMVEWFunSsucNRelSsucN
83 1stdm RelSsucNvSsucN1stvdomSsucN
84 82 83 sylan NωMVEWFunSsucNvSsucN1stvdomSsucN
85 14 eqcomd NωMVEWFunSsucNFmlasucN=domSsucN
86 85 adantr NωMVEWFunSsucNvSsucNFmlasucN=domSsucN
87 84 86 eleqtrrd NωMVEWFunSsucNvSsucN1stvFmlasucN
88 87 ad4ant13 NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stv1stvFmlasucN
89 oveq2 g=1stv1stu𝑔g=1stu𝑔1stv
90 89 eqeq2d g=1stvx=1stu𝑔gx=1stu𝑔1stv
91 90 adantl NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stvg=1stvx=1stu𝑔gx=1stu𝑔1stv
92 simpr NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stvx=1stu𝑔1stv
93 88 91 92 rspcedvd NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stvgFmlasucNx=1stu𝑔g
94 93 rexlimdva2 NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stvgFmlasucNx=1stu𝑔g
95 94 orim1d NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stugFmlasucNx=1stu𝑔giωx=𝑔i1stu
96 95 imp NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stugFmlasucNx=1stu𝑔giωx=𝑔i1stu
97 64 74 96 rspcedvd NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stufFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔if
98 97 rexlimdva2 NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stufFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔if
99 55 adantr NωMVEWFunSsucNMVEWNω
100 satfrel MVEWNωRelMSatEN
101 99 100 syl NωMVEWFunSsucNRelMSatEN
102 42 releqi RelSNRelMSatEN
103 101 102 sylibr NωMVEWFunSsucNRelSN
104 1stdm RelSNuSN1studomSN
105 103 104 sylan NωMVEWFunSsucNuSN1studomSN
106 42 dmeqi domSN=domMSatEN
107 99 56 syl NωMVEWFunSsucNdomMSatEN=FmlaN
108 106 107 eqtrid NωMVEWFunSsucNdomSN=FmlaN
109 108 eqcomd NωMVEWFunSsucNFmlaN=domSN
110 109 adantr NωMVEWFunSsucNuSNFmlaN=domSN
111 105 110 eleqtrrd NωMVEWFunSsucNuSN1stuFmlaN
112 111 adantr NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stv1stuFmlaN
113 66 rexbidv f=1stugFmlasucNFmlaNx=f𝑔ggFmlasucNFmlaNx=1stu𝑔g
114 113 adantl NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stvf=1stugFmlasucNFmlaNx=f𝑔ggFmlasucNFmlaNx=1stu𝑔g
115 simpr NωMVEWFunSsucNvMSatEsucNMSatENvMSatEsucNMSatEN
116 fveqeq2 t=v1stt=1stv1stv=1stv
117 116 adantl NωMVEWFunSsucNvMSatEsucNMSatENt=v1stt=1stv1stv=1stv
118 eqidd NωMVEWFunSsucNvMSatEsucNMSatEN1stv=1stv
119 115 117 118 rspcedvd NωMVEWFunSsucNvMSatEsucNMSatENtMSatEsucNMSatEN1stt=1stv
120 44 adantr NωMVEWFunSsucNvMSatEsucNMSatENFunMSatEsucNMSatENMSatEsucN
121 funeldmdif FunMSatEsucNMSatENMSatEsucN1stvdomMSatEsucNdomMSatENtMSatEsucNMSatEN1stt=1stv
122 120 121 syl NωMVEWFunSsucNvMSatEsucNMSatEN1stvdomMSatEsucNdomMSatENtMSatEsucNMSatEN1stt=1stv
123 119 122 mpbird NωMVEWFunSsucNvMSatEsucNMSatEN1stvdomMSatEsucNdomMSatEN
124 123 ex NωMVEWFunSsucNvMSatEsucNMSatEN1stvdomMSatEsucNdomMSatEN
125 50 eleq2i vSsucNSNvMSatEsucNMSatEN
126 125 a1i NωMVEWFunSsucNvSsucNSNvMSatEsucNMSatEN
127 12 eqcomd NωMVEWFmlasucN=domMSatEsucN
128 127 58 difeq12d NωMVEWFmlasucNFmlaN=domMSatEsucNdomMSatEN
129 128 eleq2d NωMVEW1stvFmlasucNFmlaN1stvdomMSatEsucNdomMSatEN
130 129 adantr NωMVEWFunSsucN1stvFmlasucNFmlaN1stvdomMSatEsucNdomMSatEN
131 124 126 130 3imtr4d NωMVEWFunSsucNvSsucNSN1stvFmlasucNFmlaN
132 131 adantr NωMVEWFunSsucNuSNvSsucNSN1stvFmlasucNFmlaN
133 132 imp NωMVEWFunSsucNuSNvSsucNSN1stvFmlasucNFmlaN
134 133 adantr NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stv1stvFmlasucNFmlaN
135 90 adantl NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stvg=1stvx=1stu𝑔gx=1stu𝑔1stv
136 simpr NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stvx=1stu𝑔1stv
137 134 135 136 rspcedvd NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stvgFmlasucNFmlaNx=1stu𝑔g
138 137 r19.29an NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stvgFmlasucNFmlaNx=1stu𝑔g
139 112 114 138 rspcedvd NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stvfFmlaNgFmlasucNFmlaNx=f𝑔g
140 139 rexlimdva2 NωMVEWFunSsucNuSNvSsucNSNx=1stu𝑔1stvfFmlaNgFmlasucNFmlaNx=f𝑔g
141 98 140 orim12d NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stuuSNvSsucNSNx=1stu𝑔1stvfFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔g
142 10 adantr NωMVEWFunSsucNMVEWsucNω
143 11 eqcomd MVEWsucNωFmlasucN=domMSatEsucN
144 142 143 syl NωMVEWFunSsucNFmlasucN=domMSatEsucN
145 107 eqcomd NωMVEWFunSsucNFmlaN=domMSatEN
146 144 145 difeq12d NωMVEWFunSsucNFmlasucNFmlaN=domMSatEsucNdomMSatEN
147 146 eleq2d NωMVEWFunSsucNfFmlasucNFmlaNfdomMSatEsucNdomMSatEN
148 eqid MSatE=MSatE
149 148 satfsschain MVEWsucNωNωNsucNMSatENMSatEsucN
150 28 29 149 mpisyl NωMVEWFunSsucNMSatENMSatEsucN
151 releldmdifi RelMSatEsucNMSatENMSatEsucNfdomMSatEsucNdomMSatENuMSatEsucNMSatEN1stu=f
152 80 150 151 syl2anc NωMVEWFunSsucNfdomMSatEsucNdomMSatENuMSatEsucNMSatEN1stu=f
153 147 152 sylbid NωMVEWFunSsucNfFmlasucNFmlaNuMSatEsucNMSatEN1stu=f
154 50 eqcomi MSatEsucNMSatEN=SsucNSN
155 154 rexeqi uMSatEsucNMSatEN1stu=fuSsucNSN1stu=f
156 r19.41v uSsucNSN1stu=fgFmlasucNx=f𝑔giωx=𝑔ifuSsucNSN1stu=fgFmlasucNx=f𝑔giωx=𝑔if
157 oveq1 1stu=f1stu𝑔g=f𝑔g
158 157 eqeq2d 1stu=fx=1stu𝑔gx=f𝑔g
159 158 rexbidv 1stu=fgFmlasucNx=1stu𝑔ggFmlasucNx=f𝑔g
160 eqidd 1stu=fi=i
161 id 1stu=f1stu=f
162 160 161 goaleq12d 1stu=f𝑔i1stu=𝑔if
163 162 eqeq2d 1stu=fx=𝑔i1stux=𝑔if
164 163 rexbidv 1stu=fiωx=𝑔i1stuiωx=𝑔if
165 159 164 orbi12d 1stu=fgFmlasucNx=1stu𝑔giωx=𝑔i1stugFmlasucNx=f𝑔giωx=𝑔if
166 165 adantl NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=1stu𝑔giωx=𝑔i1stugFmlasucNx=f𝑔giωx=𝑔if
167 142 11 syl NωMVEWFunSsucNdomMSatEsucN=FmlasucN
168 167 eqcomd NωMVEWFunSsucNFmlasucN=domMSatEsucN
169 168 eleq2d NωMVEWFunSsucNgFmlasucNgdomMSatEsucN
170 releldm2 RelMSatEsucNgdomMSatEsucNvMSatEsucN1stv=g
171 80 170 syl NωMVEWFunSsucNgdomMSatEsucNvMSatEsucN1stv=g
172 169 171 bitrd NωMVEWFunSsucNgFmlasucNvMSatEsucN1stv=g
173 r19.41v vMSatEsucN1stv=gx=1stu𝑔gvMSatEsucN1stv=gx=1stu𝑔g
174 1 eqcomi MSatE=S
175 174 fveq1i MSatEsucN=SsucN
176 175 rexeqi vMSatEsucN1stv=gx=1stu𝑔gvSsucN1stv=gx=1stu𝑔g
177 89 eqcoms 1stv=g1stu𝑔g=1stu𝑔1stv
178 177 eqeq2d 1stv=gx=1stu𝑔gx=1stu𝑔1stv
179 178 biimpa 1stv=gx=1stu𝑔gx=1stu𝑔1stv
180 179 a1i NωMVEWFunSsucN1stv=gx=1stu𝑔gx=1stu𝑔1stv
181 180 reximdv NωMVEWFunSsucNvSsucN1stv=gx=1stu𝑔gvSsucNx=1stu𝑔1stv
182 176 181 biimtrid NωMVEWFunSsucNvMSatEsucN1stv=gx=1stu𝑔gvSsucNx=1stu𝑔1stv
183 173 182 biimtrrid NωMVEWFunSsucNvMSatEsucN1stv=gx=1stu𝑔gvSsucNx=1stu𝑔1stv
184 183 expd NωMVEWFunSsucNvMSatEsucN1stv=gx=1stu𝑔gvSsucNx=1stu𝑔1stv
185 172 184 sylbid NωMVEWFunSsucNgFmlasucNx=1stu𝑔gvSsucNx=1stu𝑔1stv
186 185 rexlimdv NωMVEWFunSsucNgFmlasucNx=1stu𝑔gvSsucNx=1stu𝑔1stv
187 186 ad2antrr NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=1stu𝑔gvSsucNx=1stu𝑔1stv
188 187 orim1d NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=1stu𝑔giωx=𝑔i1stuvSsucNx=1stu𝑔1stviωx=𝑔i1stu
189 166 188 sylbird NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=f𝑔giωx=𝑔ifvSsucNx=1stu𝑔1stviωx=𝑔i1stu
190 189 expimpd NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=f𝑔giωx=𝑔ifvSsucNx=1stu𝑔1stviωx=𝑔i1stu
191 190 reximdva NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=f𝑔giωx=𝑔ifuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stu
192 156 191 biimtrrid NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=f𝑔giωx=𝑔ifuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stu
193 192 expd NωMVEWFunSsucNuSsucNSN1stu=fgFmlasucNx=f𝑔giωx=𝑔ifuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stu
194 155 193 biimtrid NωMVEWFunSsucNuMSatEsucNMSatEN1stu=fgFmlasucNx=f𝑔giωx=𝑔ifuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stu
195 153 194 syld NωMVEWFunSsucNfFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔ifuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stu
196 195 rexlimdv NωMVEWFunSsucNfFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔ifuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stu
197 145 eleq2d NωMVEWFunSsucNfFmlaNfdomMSatEN
198 55 100 syl NωMVEWRelMSatEN
199 198 adantr NωMVEWFunSsucNRelMSatEN
200 releldm2 RelMSatENfdomMSatENuMSatEN1stu=f
201 199 200 syl NωMVEWFunSsucNfdomMSatENuMSatEN1stu=f
202 197 201 bitrd NωMVEWFunSsucNfFmlaNuMSatEN1stu=f
203 r19.41v uMSatEN1stu=fgFmlasucNFmlaNx=f𝑔guMSatEN1stu=fgFmlasucNFmlaNx=f𝑔g
204 42 eqcomi MSatEN=SN
205 204 rexeqi uMSatEN1stu=fgFmlasucNFmlaNx=f𝑔guSN1stu=fgFmlasucNFmlaNx=f𝑔g
206 158 rexbidv 1stu=fgFmlasucNFmlaNx=1stu𝑔ggFmlasucNFmlaNx=f𝑔g
207 206 adantl NωMVEWFunSsucN1stu=fgFmlasucNFmlaNx=1stu𝑔ggFmlasucNFmlaNx=f𝑔g
208 146 eleq2d NωMVEWFunSsucNgFmlasucNFmlaNgdomMSatEsucNdomMSatEN
209 releldmdifi RelMSatEsucNMSatENMSatEsucNgdomMSatEsucNdomMSatENvMSatEsucNMSatEN1stv=g
210 80 150 209 syl2anc NωMVEWFunSsucNgdomMSatEsucNdomMSatENvMSatEsucNMSatEN1stv=g
211 208 210 sylbid NωMVEWFunSsucNgFmlasucNFmlaNvMSatEsucNMSatEN1stv=g
212 154 rexeqi vMSatEsucNMSatEN1stv=gvSsucNSN1stv=g
213 178 biimpcd x=1stu𝑔g1stv=gx=1stu𝑔1stv
214 213 adantl NωMVEWFunSsucNx=1stu𝑔g1stv=gx=1stu𝑔1stv
215 214 reximdv NωMVEWFunSsucNx=1stu𝑔gvSsucNSN1stv=gvSsucNSNx=1stu𝑔1stv
216 215 ex NωMVEWFunSsucNx=1stu𝑔gvSsucNSN1stv=gvSsucNSNx=1stu𝑔1stv
217 216 com23 NωMVEWFunSsucNvSsucNSN1stv=gx=1stu𝑔gvSsucNSNx=1stu𝑔1stv
218 212 217 biimtrid NωMVEWFunSsucNvMSatEsucNMSatEN1stv=gx=1stu𝑔gvSsucNSNx=1stu𝑔1stv
219 211 218 syld NωMVEWFunSsucNgFmlasucNFmlaNx=1stu𝑔gvSsucNSNx=1stu𝑔1stv
220 219 rexlimdv NωMVEWFunSsucNgFmlasucNFmlaNx=1stu𝑔gvSsucNSNx=1stu𝑔1stv
221 220 adantr NωMVEWFunSsucN1stu=fgFmlasucNFmlaNx=1stu𝑔gvSsucNSNx=1stu𝑔1stv
222 207 221 sylbird NωMVEWFunSsucN1stu=fgFmlasucNFmlaNx=f𝑔gvSsucNSNx=1stu𝑔1stv
223 222 expimpd NωMVEWFunSsucN1stu=fgFmlasucNFmlaNx=f𝑔gvSsucNSNx=1stu𝑔1stv
224 223 reximdv NωMVEWFunSsucNuSN1stu=fgFmlasucNFmlaNx=f𝑔guSNvSsucNSNx=1stu𝑔1stv
225 205 224 biimtrid NωMVEWFunSsucNuMSatEN1stu=fgFmlasucNFmlaNx=f𝑔guSNvSsucNSNx=1stu𝑔1stv
226 203 225 biimtrrid NωMVEWFunSsucNuMSatEN1stu=fgFmlasucNFmlaNx=f𝑔guSNvSsucNSNx=1stu𝑔1stv
227 226 expd NωMVEWFunSsucNuMSatEN1stu=fgFmlasucNFmlaNx=f𝑔guSNvSsucNSNx=1stu𝑔1stv
228 202 227 sylbid NωMVEWFunSsucNfFmlaNgFmlasucNFmlaNx=f𝑔guSNvSsucNSNx=1stu𝑔1stv
229 228 rexlimdv NωMVEWFunSsucNfFmlaNgFmlasucNFmlaNx=f𝑔guSNvSsucNSNx=1stu𝑔1stv
230 196 229 orim12d NωMVEWFunSsucNfFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔guSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stuuSNvSsucNSNx=1stu𝑔1stv
231 141 230 impbid NωMVEWFunSsucNuSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stuuSNvSsucNSNx=1stu𝑔1stvfFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔g
232 231 abbidv NωMVEWFunSsucNx|uSsucNSNvSsucNx=1stu𝑔1stviωx=𝑔i1stuuSNvSsucNSNx=1stu𝑔1stv=x|fFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔g
233 33 232 eqtrd NωMVEWFunSsucNdomxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A=x|fFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔g
234 14 233 ineq12d NωMVEWFunSsucNdomSsucNdomxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A=FmlasucNx|fFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔g
235 fmlasucdisj NωFmlasucNx|fFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔g=
236 235 ad2antrr NωMVEWFunSsucNFmlasucNx|fFmlasucNFmlaNgFmlasucNx=f𝑔giωx=𝑔iffFmlaNgFmlasucNFmlaNx=f𝑔g=
237 234 236 eqtrd NωMVEWFunSsucNdomSsucNdomxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A=