Step |
Hyp |
Ref |
Expression |
1 |
|
rexcom4 |
|
2 |
|
rexcom4 |
|
3 |
1 2
|
orbi12i |
|
4 |
|
19.43 |
|
5 |
3 4
|
bitr4i |
|
6 |
5
|
rexbii |
|
7 |
|
rexcom4 |
|
8 |
6 7
|
bitri |
|
9 |
|
rexcom4 |
|
10 |
9
|
rexbii |
|
11 |
|
rexcom4 |
|
12 |
10 11
|
bitri |
|
13 |
8 12
|
orbi12i |
|
14 |
|
19.43 |
|
15 |
13 14
|
bitr4i |
|
16 |
|
difssd |
|
17 |
|
ssralv |
|
18 |
16 17
|
syl |
|
19 |
18
|
impcom |
|
20 |
|
simpl |
|
21 |
20
|
exlimiv |
|
22 |
|
elisset |
|
23 |
|
ibar |
|
24 |
23
|
bicomd |
|
25 |
24
|
exbidv |
|
26 |
22 25
|
syl5ibrcom |
|
27 |
21 26
|
impbid2 |
|
28 |
27
|
ralrexbid |
|
29 |
28
|
adantr |
|
30 |
|
simpl |
|
31 |
30
|
exlimiv |
|
32 |
|
elisset |
|
33 |
|
ibar |
|
34 |
33
|
bicomd |
|
35 |
34
|
exbidv |
|
36 |
32 35
|
syl5ibrcom |
|
37 |
31 36
|
impbid2 |
|
38 |
37
|
ralrexbid |
|
39 |
38
|
adantl |
|
40 |
29 39
|
orbi12d |
|
41 |
40
|
ralrexbid |
|
42 |
19 41
|
syl |
|
43 |
|
ssralv |
|
44 |
|
ssralv |
|
45 |
16 44
|
syl |
|
46 |
45
|
adantrd |
|
47 |
46
|
ralimdv |
|
48 |
43 47
|
syld |
|
49 |
48
|
impcom |
|
50 |
27
|
ralrexbid |
|
51 |
50
|
ralrexbid |
|
52 |
49 51
|
syl |
|
53 |
42 52
|
orbi12d |
|
54 |
15 53
|
bitr3id |
|
55 |
|
eqeq1 |
|
56 |
55
|
anbi1d |
|
57 |
56
|
rexbidv |
|
58 |
|
eqeq1 |
|
59 |
58
|
anbi1d |
|
60 |
59
|
rexbidv |
|
61 |
57 60
|
orbi12d |
|
62 |
61
|
rexbidv |
|
63 |
56
|
2rexbidv |
|
64 |
62 63
|
orbi12d |
|
65 |
64
|
dmopabelb |
|
66 |
65
|
elv |
|
67 |
|
vex |
|
68 |
55
|
rexbidv |
|
69 |
58
|
rexbidv |
|
70 |
68 69
|
orbi12d |
|
71 |
70
|
rexbidv |
|
72 |
55
|
2rexbidv |
|
73 |
71 72
|
orbi12d |
|
74 |
67 73
|
elab |
|
75 |
54 66 74
|
3bitr4g |
|
76 |
75
|
eqrdv |
|