| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexcom4 | ⊢ ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑦 ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 2 |  | rexcom4 | ⊢ ( ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑦 ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) | 
						
							| 3 | 1 2 | orbi12i | ⊢ ( ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑦 ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑦 ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 4 |  | 19.43 | ⊢ ( ∃ 𝑦 ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑦 ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑦 ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 5 | 3 4 | bitr4i | ⊢ ( ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑦 ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 6 | 5 | rexbii | ⊢ ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 7 |  | rexcom4 | ⊢ ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑦 ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑦 ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 9 |  | rexcom4 | ⊢ ( ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑦 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 10 | 9 | rexbii | ⊢ ( ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑢  ∈  𝑆 ∃ 𝑦 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 11 |  | rexcom4 | ⊢ ( ∃ 𝑢  ∈  𝑆 ∃ 𝑦 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑦 ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 12 | 10 11 | bitri | ⊢ ( ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑦 ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) | 
						
							| 13 | 8 12 | orbi12i | ⊢ ( ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) )  ↔  ( ∃ 𝑦 ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑦 ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 14 |  | 19.43 | ⊢ ( ∃ 𝑦 ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) )  ↔  ( ∃ 𝑦 ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑦 ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 15 | 13 14 | bitr4i | ⊢ ( ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) )  ↔  ∃ 𝑦 ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 16 |  | difssd | ⊢ ( 𝑆  ⊆  𝑈  →  ( 𝑈  ∖  𝑆 )  ⊆  𝑈 ) | 
						
							| 17 |  | ssralv | ⊢ ( ( 𝑈  ∖  𝑆 )  ⊆  𝑈  →  ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ∀ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑆  ⊆  𝑈  →  ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ∀ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 ) ) ) | 
						
							| 19 | 18 | impcom | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  ∀ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑧  =  𝐴 ) | 
						
							| 21 | 20 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑧  =  𝐴 ) | 
						
							| 22 |  | elisset | ⊢ ( 𝐵  ∈  𝑋  →  ∃ 𝑦 𝑦  =  𝐵 ) | 
						
							| 23 |  | ibar | ⊢ ( 𝑧  =  𝐴  →  ( 𝑦  =  𝐵  ↔  ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 24 | 23 | bicomd | ⊢ ( 𝑧  =  𝐴  →  ( ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  𝑦  =  𝐵 ) ) | 
						
							| 25 | 24 | exbidv | ⊢ ( 𝑧  =  𝐴  →  ( ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑦 𝑦  =  𝐵 ) ) | 
						
							| 26 | 22 25 | syl5ibrcom | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝑧  =  𝐴  →  ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 27 | 21 26 | impbid2 | ⊢ ( 𝐵  ∈  𝑋  →  ( ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  𝑧  =  𝐴 ) ) | 
						
							| 28 | 27 | ralrexbid | ⊢ ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  →  ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴 ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  →  𝑧  =  𝐶 ) | 
						
							| 31 | 30 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  →  𝑧  =  𝐶 ) | 
						
							| 32 |  | elisset | ⊢ ( 𝐷  ∈  𝑊  →  ∃ 𝑦 𝑦  =  𝐷 ) | 
						
							| 33 |  | ibar | ⊢ ( 𝑧  =  𝐶  →  ( 𝑦  =  𝐷  ↔  ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 34 | 33 | bicomd | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  𝑦  =  𝐷 ) ) | 
						
							| 35 | 34 | exbidv | ⊢ ( 𝑧  =  𝐶  →  ( ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑦 𝑦  =  𝐷 ) ) | 
						
							| 36 | 32 35 | syl5ibrcom | ⊢ ( 𝐷  ∈  𝑊  →  ( 𝑧  =  𝐶  →  ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 37 | 31 36 | impbid2 | ⊢ ( 𝐷  ∈  𝑊  →  ( ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  𝑧  =  𝐶 ) ) | 
						
							| 38 | 37 | ralrexbid | ⊢ ( ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊  →  ( ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) | 
						
							| 40 | 29 39 | orbi12d | ⊢ ( ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 41 | 40 | ralrexbid | ⊢ ( ∀ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 42 | 19 41 | syl | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 43 |  | ssralv | ⊢ ( 𝑆  ⊆  𝑈  →  ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ∀ 𝑢  ∈  𝑆 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 ) ) ) | 
						
							| 44 |  | ssralv | ⊢ ( ( 𝑈  ∖  𝑆 )  ⊆  𝑈  →  ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  →  ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋 ) ) | 
						
							| 45 | 16 44 | syl | ⊢ ( 𝑆  ⊆  𝑈  →  ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  →  ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋 ) ) | 
						
							| 46 | 45 | adantrd | ⊢ ( 𝑆  ⊆  𝑈  →  ( ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋 ) ) | 
						
							| 47 | 46 | ralimdv | ⊢ ( 𝑆  ⊆  𝑈  →  ( ∀ 𝑢  ∈  𝑆 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋 ) ) | 
						
							| 48 | 43 47 | syld | ⊢ ( 𝑆  ⊆  𝑈  →  ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  →  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋 ) ) | 
						
							| 49 | 48 | impcom | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋 ) | 
						
							| 50 | 27 | ralrexbid | ⊢ ( ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋  →  ( ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) | 
						
							| 51 | 50 | ralrexbid | ⊢ ( ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝐵  ∈  𝑋  →  ( ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) | 
						
							| 52 | 49 51 | syl | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  ( ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) | 
						
							| 53 | 42 52 | orbi12d | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  ( ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ∃ 𝑦 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ∃ 𝑦 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) )  ↔  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) ) | 
						
							| 54 | 15 53 | bitr3id | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  ( ∃ 𝑦 ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) )  ↔  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) ) | 
						
							| 55 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝐴  ↔  𝑧  =  𝐴 ) ) | 
						
							| 56 | 55 | anbi1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 57 | 56 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 58 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝐶  ↔  𝑧  =  𝐶 ) ) | 
						
							| 59 | 58 | anbi1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 60 | 59 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 )  ↔  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 61 | 57 60 | orbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) ) | 
						
							| 62 | 61 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ↔  ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) ) ) ) | 
						
							| 63 | 56 | 2rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ↔  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 64 | 62 63 | orbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  ↔  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) ) | 
						
							| 65 | 64 | dmopabelb | ⊢ ( 𝑧  ∈  V  →  ( 𝑧  ∈  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) ) }  ↔  ∃ 𝑦 ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) ) | 
						
							| 66 | 65 | elv | ⊢ ( 𝑧  ∈  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) ) }  ↔  ∃ 𝑦 ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑧  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑧  =  𝐴  ∧  𝑦  =  𝐵 ) ) ) | 
						
							| 67 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 68 | 55 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑣  ∈  𝑈 𝑥  =  𝐴  ↔  ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴 ) ) | 
						
							| 69 | 58 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶  ↔  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) | 
						
							| 70 | 68 69 | orbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∃ 𝑣  ∈  𝑈 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ↔  ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 71 | 70 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ↔  ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 ) ) ) | 
						
							| 72 | 55 | 2rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑥  =  𝐴  ↔  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) | 
						
							| 73 | 71 72 | orbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑥  =  𝐴 )  ↔  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) ) | 
						
							| 74 | 67 73 | elab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑥  =  𝐴 ) }  ↔  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑧  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑧  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑧  =  𝐴 ) ) | 
						
							| 75 | 54 66 74 | 3bitr4g | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑧  ∈  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) ) }  ↔  𝑧  ∈  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑥  =  𝐴 ) } ) ) | 
						
							| 76 | 75 | eqrdv | ⊢ ( ( ∀ 𝑢  ∈  𝑈 ( ∀ 𝑣  ∈  𝑈 𝐵  ∈  𝑋  ∧  ∀ 𝑖  ∈  𝐼 𝐷  ∈  𝑊 )  ∧  𝑆  ⊆  𝑈 )  →  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∨  ∃ 𝑖  ∈  𝐼 ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) ) }  =  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( 𝑈  ∖  𝑆 ) ( ∃ 𝑣  ∈  𝑈 𝑥  =  𝐴  ∨  ∃ 𝑖  ∈  𝐼 𝑥  =  𝐶 )  ∨  ∃ 𝑢  ∈  𝑆 ∃ 𝑣  ∈  ( 𝑈  ∖  𝑆 ) 𝑥  =  𝐴 ) } ) |