| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satffunlem2lem2.s | ⊢ 𝑆  =  ( 𝑀  Sat  𝐸 ) | 
						
							| 2 |  | satffunlem2lem2.a | ⊢ 𝐴  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) | 
						
							| 3 |  | satffunlem2lem2.b | ⊢ 𝐵  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } | 
						
							| 4 | 1 | fveq1i | ⊢ ( 𝑆 ‘ suc  𝑁 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) | 
						
							| 5 | 4 | dmeqi | ⊢ dom  ( 𝑆 ‘ suc  𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) | 
						
							| 6 |  | simprl | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  𝑀  ∈  𝑉 ) | 
						
							| 7 |  | simprr | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  𝐸  ∈  𝑊 ) | 
						
							| 8 |  | peano2 | ⊢ ( 𝑁  ∈  ω  →  suc  𝑁  ∈  ω ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  suc  𝑁  ∈  ω ) | 
						
							| 10 | 6 7 9 | 3jca | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  suc  𝑁  ∈  ω ) ) | 
						
							| 11 |  | satfdmfmla | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  suc  𝑁  ∈  ω )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  =  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  =  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  =  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 14 | 5 13 | eqtrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  ( 𝑆 ‘ suc  𝑁 )  =  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 15 |  | ovex | ⊢ ( 𝑀  ↑m  ω )  ∈  V | 
						
							| 16 | 15 | difexi | ⊢ ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) )  ∈  V | 
						
							| 17 | 2 16 | eqeltri | ⊢ 𝐴  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  𝐴  ∈  V ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  ∀ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝐴  ∈  V ) | 
						
							| 20 | 3 15 | rabex2 | ⊢ 𝐵  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑖  ∈  ω )  →  𝐵  ∈  V ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  ∀ 𝑖  ∈  ω 𝐵  ∈  V ) | 
						
							| 23 | 19 22 | jca | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∀ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝐴  ∈  V  ∧  ∀ 𝑖  ∈  ω 𝐵  ∈  V ) ) | 
						
							| 24 | 23 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ∀ 𝑢  ∈  ( 𝑆 ‘ suc  𝑁 ) ( ∀ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝐴  ∈  V  ∧  ∀ 𝑖  ∈  ω 𝐵  ∈  V ) ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) ) | 
						
							| 26 | 8 | ancri | ⊢ ( 𝑁  ∈  ω  →  ( suc  𝑁  ∈  ω  ∧  𝑁  ∈  ω ) ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( suc  𝑁  ∈  ω  ∧  𝑁  ∈  ω ) ) | 
						
							| 28 | 25 27 | jca | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( suc  𝑁  ∈  ω  ∧  𝑁  ∈  ω ) ) ) | 
						
							| 29 |  | sssucid | ⊢ 𝑁  ⊆  suc  𝑁 | 
						
							| 30 | 1 | satfsschain | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( suc  𝑁  ∈  ω  ∧  𝑁  ∈  ω ) )  →  ( 𝑁  ⊆  suc  𝑁  →  ( 𝑆 ‘ 𝑁 )  ⊆  ( 𝑆 ‘ suc  𝑁 ) ) ) | 
						
							| 31 | 28 29 30 | mpisyl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑆 ‘ 𝑁 )  ⊆  ( 𝑆 ‘ suc  𝑁 ) ) | 
						
							| 32 |  | dmopab3rexdif | ⊢ ( ( ∀ 𝑢  ∈  ( 𝑆 ‘ suc  𝑁 ) ( ∀ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝐴  ∈  V  ∧  ∀ 𝑖  ∈  ω 𝐵  ∈  V )  ∧  ( 𝑆 ‘ 𝑁 )  ⊆  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  𝐵 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 ) ) }  =  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) } ) | 
						
							| 33 | 24 31 32 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  𝐵 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 ) ) }  =  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) } ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 35 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑢  →  ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑢 )  ↔  ( 1st  ‘ 𝑢 )  =  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  ∧  𝑤  =  𝑢 )  →  ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑢 )  ↔  ( 1st  ‘ 𝑢 )  =  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 37 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( 1st  ‘ 𝑢 )  =  ( 1st  ‘ 𝑢 ) ) | 
						
							| 38 | 34 36 37 | rspcedvd | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ∃ 𝑤  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑢 ) ) | 
						
							| 39 | 4 | funeqi | ⊢ ( Fun  ( 𝑆 ‘ suc  𝑁 )  ↔  Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 40 | 39 | biimpi | ⊢ ( Fun  ( 𝑆 ‘ suc  𝑁 )  →  Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 42 | 1 | fveq1i | ⊢ ( 𝑆 ‘ 𝑁 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) | 
						
							| 43 | 31 42 4 | 3sstr3g | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 44 | 41 43 | jca | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∧  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∧  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) ) | 
						
							| 46 |  | funeldmdif | ⊢ ( ( Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∧  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) )  →  ( ( 1st  ‘ 𝑢 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  ↔  ∃ 𝑤  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( ( 1st  ‘ 𝑢 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  ↔  ∃ 𝑤  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 48 | 38 47 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 49 | 48 | ex | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 50 | 4 42 | difeq12i | ⊢ ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  =  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 51 | 50 | eleq2i | ⊢ ( 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  ↔  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 52 | 51 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  ↔  𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 53 | 13 | eqcomd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ suc  𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 54 |  | simpl | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  𝑁  ∈  ω ) | 
						
							| 55 | 6 7 54 | 3jca | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω ) ) | 
						
							| 56 |  | satfdmfmla | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  ( Fmla ‘ 𝑁 ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  ( Fmla ‘ 𝑁 ) ) | 
						
							| 58 | 57 | eqcomd | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  ( Fmla ‘ 𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ 𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 60 | 53 59 | difeq12d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  =  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 61 | 60 | eleq2d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( 1st  ‘ 𝑢 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ↔  ( 1st  ‘ 𝑢 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 62 | 49 52 61 | 3imtr4d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) ) | 
						
							| 63 | 62 | imp | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 65 |  | oveq1 | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ( 𝑓 ⊼𝑔 𝑔 )  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) | 
						
							| 66 | 65 | eqeq2d | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ( 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ↔  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) | 
						
							| 67 | 66 | rexbidv | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ↔  ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) | 
						
							| 68 |  | eqidd | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  𝑖  =  𝑖 ) | 
						
							| 69 |  | id | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  𝑓  =  ( 1st  ‘ 𝑢 ) ) | 
						
							| 70 | 68 69 | goaleq12d | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ∀𝑔 𝑖 𝑓  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) | 
						
							| 71 | 70 | eqeq2d | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ( 𝑥  =  ∀𝑔 𝑖 𝑓  ↔  𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 72 | 71 | rexbidv | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ( ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓  ↔  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 73 | 67 72 | orbi12d | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ↔  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) )  ∧  𝑓  =  ( 1st  ‘ 𝑢 ) )  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ↔  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 75 | 6 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  𝑀  ∈  𝑉 ) | 
						
							| 76 | 7 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  𝐸  ∈  𝑊 ) | 
						
							| 77 | 8 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  suc  𝑁  ∈  ω ) | 
						
							| 78 | 75 76 77 | 3jca | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  suc  𝑁  ∈  ω ) ) | 
						
							| 79 |  | satfrel | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  suc  𝑁  ∈  ω )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 81 | 4 | releqi | ⊢ ( Rel  ( 𝑆 ‘ suc  𝑁 )  ↔  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 82 | 80 81 | sylibr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  Rel  ( 𝑆 ‘ suc  𝑁 ) ) | 
						
							| 83 |  | 1stdm | ⊢ ( ( Rel  ( 𝑆 ‘ suc  𝑁 )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 1st  ‘ 𝑣 )  ∈  dom  ( 𝑆 ‘ suc  𝑁 ) ) | 
						
							| 84 | 82 83 | sylan | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 1st  ‘ 𝑣 )  ∈  dom  ( 𝑆 ‘ suc  𝑁 ) ) | 
						
							| 85 | 14 | eqcomd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ suc  𝑁 )  =  dom  ( 𝑆 ‘ suc  𝑁 ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ suc  𝑁 )  =  dom  ( 𝑆 ‘ suc  𝑁 ) ) | 
						
							| 87 | 84 86 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 88 | 87 | ad4ant13 | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 89 |  | oveq2 | ⊢ ( 𝑔  =  ( 1st  ‘ 𝑣 )  →  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 90 | 89 | eqeq2d | ⊢ ( 𝑔  =  ( 1st  ‘ 𝑣 )  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  ∧  𝑔  =  ( 1st  ‘ 𝑣 ) )  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 92 |  | simpr | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 93 | 88 91 92 | rspcedvd | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) | 
						
							| 94 | 93 | rexlimdva2 | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  →  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  →  ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) | 
						
							| 95 | 94 | orim1d | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  →  ( ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  →  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 96 | 95 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) )  →  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 97 | 64 74 96 | rspcedvd | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) )  →  ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) ) | 
						
							| 98 | 97 | rexlimdva2 | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  →  ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) ) ) | 
						
							| 99 | 55 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω ) ) | 
						
							| 100 |  | satfrel | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 101 | 99 100 | syl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 102 | 42 | releqi | ⊢ ( Rel  ( 𝑆 ‘ 𝑁 )  ↔  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 103 | 101 102 | sylibr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  Rel  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 104 |  | 1stdm | ⊢ ( ( Rel  ( 𝑆 ‘ 𝑁 )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑢 )  ∈  dom  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 105 | 103 104 | sylan | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑢 )  ∈  dom  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 106 | 42 | dmeqi | ⊢ dom  ( 𝑆 ‘ 𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) | 
						
							| 107 | 99 56 | syl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  ( Fmla ‘ 𝑁 ) ) | 
						
							| 108 | 106 107 | eqtrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  ( 𝑆 ‘ 𝑁 )  =  ( Fmla ‘ 𝑁 ) ) | 
						
							| 109 | 108 | eqcomd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ 𝑁 )  =  dom  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  →  ( Fmla ‘ 𝑁 )  =  dom  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 111 | 105 110 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( Fmla ‘ 𝑁 ) ) | 
						
							| 113 | 66 | rexbidv | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑢 )  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ↔  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  ∧  𝑓  =  ( 1st  ‘ 𝑢 ) )  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ↔  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) | 
						
							| 115 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 116 |  | fveqeq2 | ⊢ ( 𝑡  =  𝑣  →  ( ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑣 )  ↔  ( 1st  ‘ 𝑣 )  =  ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  ∧  𝑡  =  𝑣 )  →  ( ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑣 )  ↔  ( 1st  ‘ 𝑣 )  =  ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 118 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( 1st  ‘ 𝑣 )  =  ( 1st  ‘ 𝑣 ) ) | 
						
							| 119 | 115 117 118 | rspcedvd | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ∃ 𝑡  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑣 ) ) | 
						
							| 120 | 44 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∧  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) ) | 
						
							| 121 |  | funeldmdif | ⊢ ( ( Fun  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∧  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) )  →  ( ( 1st  ‘ 𝑣 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  ↔  ∃ 𝑡  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 122 | 120 121 | syl | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( ( 1st  ‘ 𝑣 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  ↔  ∃ 𝑡  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑡 )  =  ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 123 | 119 122 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 124 | 123 | ex | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 125 | 50 | eleq2i | ⊢ ( 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  ↔  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 126 | 125 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  ↔  𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 127 | 12 | eqcomd | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  ( Fmla ‘ suc  𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 128 | 127 58 | difeq12d | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  =  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 129 | 128 | eleq2d | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  ( ( 1st  ‘ 𝑣 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ↔  ( 1st  ‘ 𝑣 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( 1st  ‘ 𝑣 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ↔  ( 1st  ‘ 𝑣 )  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 131 | 124 126 130 | 3imtr4d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  →  ( 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) ) | 
						
							| 133 | 132 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 134 | 133 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ( 1st  ‘ 𝑣 )  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ) | 
						
							| 135 | 90 | adantl | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  ∧  𝑔  =  ( 1st  ‘ 𝑣 ) )  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 136 |  | simpr | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 137 | 134 135 136 | rspcedvd | ⊢ ( ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) | 
						
							| 138 | 137 | r19.29an | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) | 
						
							| 139 | 112 114 138 | rspcedvd | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( 𝑆 ‘ 𝑁 ) )  ∧  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) | 
						
							| 140 | 139 | rexlimdva2 | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  →  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) | 
						
							| 141 | 98 140 | orim12d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  →  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) ) | 
						
							| 142 | 10 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  suc  𝑁  ∈  ω ) ) | 
						
							| 143 | 11 | eqcomd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  suc  𝑁  ∈  ω )  →  ( Fmla ‘ suc  𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 144 | 142 143 | syl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ suc  𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 145 | 107 | eqcomd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ 𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 146 | 144 145 | difeq12d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  =  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 147 | 146 | eleq2d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ↔  𝑓  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 148 |  | eqid | ⊢ ( 𝑀  Sat  𝐸 )  =  ( 𝑀  Sat  𝐸 ) | 
						
							| 149 | 148 | satfsschain | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  ( suc  𝑁  ∈  ω  ∧  𝑁  ∈  ω ) )  →  ( 𝑁  ⊆  suc  𝑁  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) ) | 
						
							| 150 | 28 29 149 | mpisyl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 151 |  | releldmdifi | ⊢ ( ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∧  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  →  ∃ 𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓 ) ) | 
						
							| 152 | 80 150 151 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  →  ∃ 𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓 ) ) | 
						
							| 153 | 147 152 | sylbid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ∃ 𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓 ) ) | 
						
							| 154 | 50 | eqcomi | ⊢ ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  =  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) | 
						
							| 155 | 154 | rexeqi | ⊢ ( ∃ 𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓  ↔  ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓 ) | 
						
							| 156 |  | r19.41v | ⊢ ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) )  ↔  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) ) ) | 
						
							| 157 |  | oveq1 | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  =  ( 𝑓 ⊼𝑔 𝑔 ) ) | 
						
							| 158 | 157 | eqeq2d | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) | 
						
							| 159 | 158 | rexbidv | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) | 
						
							| 160 |  | eqidd | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  𝑖  =  𝑖 ) | 
						
							| 161 |  | id | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( 1st  ‘ 𝑢 )  =  𝑓 ) | 
						
							| 162 | 160 161 | goaleq12d | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  =  ∀𝑔 𝑖 𝑓 ) | 
						
							| 163 | 162 | eqeq2d | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ↔  𝑥  =  ∀𝑔 𝑖 𝑓 ) ) | 
						
							| 164 | 163 | rexbidv | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ↔  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) ) | 
						
							| 165 | 159 164 | orbi12d | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ↔  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) ) ) | 
						
							| 166 | 165 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( 1st  ‘ 𝑢 )  =  𝑓 )  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ↔  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) ) ) | 
						
							| 167 | 142 11 | syl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  =  ( Fmla ‘ suc  𝑁 ) ) | 
						
							| 168 | 167 | eqcomd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( Fmla ‘ suc  𝑁 )  =  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) | 
						
							| 169 | 168 | eleq2d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( Fmla ‘ suc  𝑁 )  ↔  𝑔  ∈  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ) ) | 
						
							| 170 |  | releldm2 | ⊢ ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  →  ( 𝑔  ∈  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ↔  ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( 1st  ‘ 𝑣 )  =  𝑔 ) ) | 
						
							| 171 | 80 170 | syl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ↔  ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( 1st  ‘ 𝑣 )  =  𝑔 ) ) | 
						
							| 172 | 169 171 | bitrd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( Fmla ‘ suc  𝑁 )  ↔  ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( 1st  ‘ 𝑣 )  =  𝑔 ) ) | 
						
							| 173 |  | r19.41v | ⊢ ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  ↔  ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) | 
						
							| 174 | 1 | eqcomi | ⊢ ( 𝑀  Sat  𝐸 )  =  𝑆 | 
						
							| 175 | 174 | fveq1i | ⊢ ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  =  ( 𝑆 ‘ suc  𝑁 ) | 
						
							| 176 | 175 | rexeqi | ⊢ ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  ↔  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) ( ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) ) ) | 
						
							| 177 | 89 | eqcoms | ⊢ ( ( 1st  ‘ 𝑣 )  =  𝑔  →  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 178 | 177 | eqeq2d | ⊢ ( ( 1st  ‘ 𝑣 )  =  𝑔  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 179 | 178 | biimpa | ⊢ ( ( ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  →  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 180 | 179 | a1i | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  →  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 181 | 180 | reximdv | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) ( ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  →  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 182 | 176 181 | biimtrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  →  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 183 | 173 182 | biimtrrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( 1st  ‘ 𝑣 )  =  𝑔  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  →  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 184 | 183 | expd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) ( 1st  ‘ 𝑣 )  =  𝑔  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 185 | 172 184 | sylbid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( Fmla ‘ suc  𝑁 )  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 186 | 185 | rexlimdv | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 187 | 186 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( 1st  ‘ 𝑢 )  =  𝑓 )  →  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 188 | 187 | orim1d | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( 1st  ‘ 𝑢 )  =  𝑓 )  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  →  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 189 | 166 188 | sylbird | ⊢ ( ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  ∧  ( 1st  ‘ 𝑢 )  =  𝑓 )  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  →  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 190 | 189 | expimpd | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) )  →  ( ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) )  →  ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 191 | 190 | reximdva | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) )  →  ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 192 | 156 191 | biimtrrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 ) )  →  ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 193 | 192 | expd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  →  ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) ) | 
						
							| 194 | 155 193 | biimtrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  →  ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) ) | 
						
							| 195 | 153 194 | syld | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ( ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  →  ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) ) | 
						
							| 196 | 195 | rexlimdv | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  →  ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) ) ) ) | 
						
							| 197 | 145 | eleq2d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ↔  𝑓  ∈  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 198 | 55 100 | syl | ⊢ ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 199 | 198 | adantr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 200 |  | releldm2 | ⊢ ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  →  ( 𝑓  ∈  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ↔  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( 1st  ‘ 𝑢 )  =  𝑓 ) ) | 
						
							| 201 | 199 200 | syl | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ↔  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( 1st  ‘ 𝑢 )  =  𝑓 ) ) | 
						
							| 202 | 197 201 | bitrd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  ↔  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( 1st  ‘ 𝑢 )  =  𝑓 ) ) | 
						
							| 203 |  | r19.41v | ⊢ ( ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) )  ↔  ( ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) | 
						
							| 204 | 42 | eqcomi | ⊢ ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  =  ( 𝑆 ‘ 𝑁 ) | 
						
							| 205 | 204 | rexeqi | ⊢ ( ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) )  ↔  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) | 
						
							| 206 | 158 | rexbidv | ⊢ ( ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) | 
						
							| 207 | 206 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  ( 1st  ‘ 𝑢 )  =  𝑓 )  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  ↔  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) | 
						
							| 208 | 146 | eleq2d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  ↔  𝑔  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 209 |  | releldmdifi | ⊢ ( ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∧  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 )  ⊆  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  →  ∃ 𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔 ) ) | 
						
							| 210 | 80 150 209 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( dom  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  dom  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) )  →  ∃ 𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔 ) ) | 
						
							| 211 | 208 210 | sylbid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ∃ 𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔 ) ) | 
						
							| 212 | 154 | rexeqi | ⊢ ( ∃ 𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔  ↔  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔 ) | 
						
							| 213 | 178 | biimpcd | ⊢ ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ( ( 1st  ‘ 𝑣 )  =  𝑔  →  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 214 | 213 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  →  ( ( 1st  ‘ 𝑣 )  =  𝑔  →  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 215 | 214 | reximdv | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 ) )  →  ( ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 216 | 215 | ex | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ( ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 217 | 216 | com23 | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 218 | 212 217 | biimtrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑣  ∈  ( ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑁 )  ∖  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ( 1st  ‘ 𝑣 )  =  𝑔  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 219 | 211 218 | syld | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) )  →  ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 220 | 219 | rexlimdv | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 221 | 220 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  ( 1st  ‘ 𝑢 )  =  𝑓 )  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 222 | 207 221 | sylbird | ⊢ ( ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  ∧  ( 1st  ‘ 𝑢 )  =  𝑓 )  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 223 | 222 | expimpd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) )  →  ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 224 | 223 | reximdv | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) )  →  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 225 | 205 224 | biimtrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) )  →  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 226 | 203 225 | biimtrrid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( 1st  ‘ 𝑢 )  =  𝑓  ∧  ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) )  →  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 227 | 226 | expd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ( 1st  ‘ 𝑢 )  =  𝑓  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  →  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 228 | 202 227 | sylbid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( 𝑓  ∈  ( Fmla ‘ 𝑁 )  →  ( ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  →  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 229 | 228 | rexlimdv | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  →  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) | 
						
							| 230 | 196 229 | orim12d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) )  →  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) ) ) | 
						
							| 231 | 141 230 | impbid | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) )  ↔  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) ) ) | 
						
							| 232 | 231 | abbidv | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  { 𝑥  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) ) ) }  =  { 𝑥  ∣  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) } ) | 
						
							| 233 | 33 232 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  𝐵 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 ) ) }  =  { 𝑥  ∣  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) } ) | 
						
							| 234 | 14 233 | ineq12d | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( dom  ( 𝑆 ‘ suc  𝑁 )  ∩  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  𝐵 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 ) ) } )  =  ( ( Fmla ‘ suc  𝑁 )  ∩  { 𝑥  ∣  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) } ) ) | 
						
							| 235 |  | fmlasucdisj | ⊢ ( 𝑁  ∈  ω  →  ( ( Fmla ‘ suc  𝑁 )  ∩  { 𝑥  ∣  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) } )  =  ∅ ) | 
						
							| 236 | 235 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( ( Fmla ‘ suc  𝑁 )  ∩  { 𝑥  ∣  ( ∃ 𝑓  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑔  ∈  ( Fmla ‘ suc  𝑁 ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 )  ∨  ∃ 𝑖  ∈  ω 𝑥  =  ∀𝑔 𝑖 𝑓 )  ∨  ∃ 𝑓  ∈  ( Fmla ‘ 𝑁 ) ∃ 𝑔  ∈  ( ( Fmla ‘ suc  𝑁 )  ∖  ( Fmla ‘ 𝑁 ) ) 𝑥  =  ( 𝑓 ⊼𝑔 𝑔 ) ) } )  =  ∅ ) | 
						
							| 237 | 234 236 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ω  ∧  ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 ) )  ∧  Fun  ( 𝑆 ‘ suc  𝑁 ) )  →  ( dom  ( 𝑆 ‘ suc  𝑁 )  ∩  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑢  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( ∃ 𝑣  ∈  ( 𝑆 ‘ suc  𝑁 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  𝐵 ) )  ∨  ∃ 𝑢  ∈  ( 𝑆 ‘ 𝑁 ) ∃ 𝑣  ∈  ( ( 𝑆 ‘ suc  𝑁 )  ∖  ( 𝑆 ‘ 𝑁 ) ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  𝐴 ) ) } )  =  ∅ ) |