Metamath Proof Explorer


Theorem satfsschain

Description: The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023)

Ref Expression
Hypothesis satfsschain.s S=MSatE
Assertion satfsschain MVEWAωBωBASBSA

Proof

Step Hyp Ref Expression
1 satfsschain.s S=MSatE
2 fveq2 b=BSb=SB
3 2 sseq2d b=BSBSbSBSB
4 3 imbi2d b=BMVEWSBSbMVEWSBSB
5 fveq2 b=aSb=Sa
6 5 sseq2d b=aSBSbSBSa
7 6 imbi2d b=aMVEWSBSbMVEWSBSa
8 fveq2 b=sucaSb=Ssuca
9 8 sseq2d b=sucaSBSbSBSsuca
10 9 imbi2d b=sucaMVEWSBSbMVEWSBSsuca
11 fveq2 b=ASb=SA
12 11 sseq2d b=ASBSbSBSA
13 12 imbi2d b=AMVEWSBSbMVEWSBSA
14 ssidd MVEWSBSB
15 14 a1i BωMVEWSBSB
16 pm2.27 MVEWMVEWSBSaSBSa
17 16 adantl aωBωBaMVEWMVEWSBSaSBSa
18 simpr aωBωBaMVEWSBSaSBSa
19 ssun1 SaSaxy|uSavSax=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=zMω|kMikzωi2ndu
20 simpl MVEWMV
21 simpr MVEWEW
22 simplll aωBωBaMVEWaω
23 1 satfvsuc MVEWaωSsuca=Saxy|uSavSax=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=zMω|kMikzωi2ndu
24 20 21 22 23 syl2an23an aωBωBaMVEWSsuca=Saxy|uSavSax=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=zMω|kMikzωi2ndu
25 19 24 sseqtrrid aωBωBaMVEWSaSsuca
26 25 adantr aωBωBaMVEWSBSaSaSsuca
27 18 26 sstrd aωBωBaMVEWSBSaSBSsuca
28 27 ex aωBωBaMVEWSBSaSBSsuca
29 17 28 syld aωBωBaMVEWMVEWSBSaSBSsuca
30 29 ex aωBωBaMVEWMVEWSBSaSBSsuca
31 30 com23 aωBωBaMVEWSBSaMVEWSBSsuca
32 4 7 10 13 15 31 findsg AωBωBAMVEWSBSA
33 32 ex AωBωBAMVEWSBSA
34 33 com23 AωBωMVEWBASBSA
35 34 impcom MVEWAωBωBASBSA