Metamath Proof Explorer


Theorem satfvsuc

Description: The value of the satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 10-Oct-2023)

Ref Expression
Hypothesis satfv0.s S=MSatE
Assertion satfvsuc MVEWNωSsucN=SNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu

Proof

Step Hyp Ref Expression
1 satfv0.s S=MSatE
2 peano2 NωsucNω
3 elelsuc sucNωsucNsucω
4 2 3 syl NωsucNsucω
5 1 satfvsucom MVEWsucNsucωSsucN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucN
6 4 5 syl3an3 MVEWNωSsucN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucN
7 nnon NωNOn
8 7 3ad2ant3 MVEWNωNOn
9 rdgsuc NOnrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucN=fVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndurecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN
10 8 9 syl MVEWNωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucN=fVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndurecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN
11 elelsuc NωNsucω
12 1 satfvsucom MVEWNsucωSN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN
13 11 12 syl3an3 MVEWNωSN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN
14 13 eqcomd MVEWNωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN=SN
15 14 fveq2d MVEWNωfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndurecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN=fVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduSN
16 eqid fVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu=fVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
17 id f=SNf=SN
18 rexeq f=SNvfx=1stu𝑔1stvy=Mω2ndu2ndvvSNx=1stu𝑔1stvy=Mω2ndu2ndv
19 18 orbi1d f=SNvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
20 19 rexeqbi1dv f=SNufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
21 20 opabbidv f=SNxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu=xy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
22 17 21 uneq12d f=SNfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu=SNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
23 fvexd MVEWNωSNV
24 1 satfvsuclem2 MVEWNωxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
25 unexg SNVxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduVSNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
26 23 24 25 syl2anc MVEWNωSNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
27 16 22 23 26 fvmptd3 MVEWNωfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduSN=SNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
28 15 27 eqtrd MVEWNωfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndurecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN=SNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
29 6 10 28 3eqtrd MVEWNωSsucN=SNxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu