Step |
Hyp |
Ref |
Expression |
1 |
|
findsg.1 |
|
2 |
|
findsg.2 |
|
3 |
|
findsg.3 |
|
4 |
|
findsg.4 |
|
5 |
|
findsg.5 |
|
6 |
|
findsg.6 |
|
7 |
|
sseq2 |
|
8 |
7
|
adantl |
|
9 |
|
eqeq2 |
|
10 |
9 1
|
syl6bir |
|
11 |
10
|
imp |
|
12 |
8 11
|
imbi12d |
|
13 |
7
|
imbi1d |
|
14 |
|
ss0 |
|
15 |
14
|
con3i |
|
16 |
15
|
pm2.21d |
|
17 |
16
|
pm5.74d |
|
18 |
13 17
|
sylan9bbr |
|
19 |
12 18
|
pm2.61ian |
|
20 |
19
|
imbi2d |
|
21 |
|
sseq2 |
|
22 |
21 2
|
imbi12d |
|
23 |
22
|
imbi2d |
|
24 |
|
sseq2 |
|
25 |
24 3
|
imbi12d |
|
26 |
25
|
imbi2d |
|
27 |
|
sseq2 |
|
28 |
27 4
|
imbi12d |
|
29 |
28
|
imbi2d |
|
30 |
5
|
a1d |
|
31 |
|
vex |
|
32 |
31
|
sucex |
|
33 |
32
|
eqvinc |
|
34 |
5 1
|
syl5ibr |
|
35 |
3
|
biimpd |
|
36 |
34 35
|
sylan9r |
|
37 |
36
|
exlimiv |
|
38 |
33 37
|
sylbi |
|
39 |
38
|
eqcoms |
|
40 |
39
|
imim2i |
|
41 |
40
|
a1d |
|
42 |
41
|
com4r |
|
43 |
42
|
adantl |
|
44 |
|
df-ne |
|
45 |
44
|
anbi2i |
|
46 |
|
annim |
|
47 |
45 46
|
bitri |
|
48 |
|
nnon |
|
49 |
|
nnon |
|
50 |
|
onsssuc |
|
51 |
|
suceloni |
|
52 |
|
onelpss |
|
53 |
51 52
|
sylan2 |
|
54 |
50 53
|
bitrd |
|
55 |
48 49 54
|
syl2anr |
|
56 |
6
|
ex |
|
57 |
56
|
a1ddd |
|
58 |
57
|
a2d |
|
59 |
58
|
com23 |
|
60 |
55 59
|
sylbird |
|
61 |
47 60
|
syl5bir |
|
62 |
43 61
|
pm2.61d |
|
63 |
62
|
ex |
|
64 |
63
|
a2d |
|
65 |
20 23 26 29 30 64
|
finds |
|
66 |
65
|
imp31 |
|