Step |
Hyp |
Ref |
Expression |
1 |
|
satfvsucsuc.s |
|- S = ( M Sat E ) |
2 |
|
satfvsucsuc.a |
|- A = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
3 |
|
satfvsucsuc.b |
|- B = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
4 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
5 |
1
|
satfvsuc |
|- ( ( M e. V /\ E e. W /\ suc N e. _om ) -> ( S ` suc suc N ) = ( ( S ` suc N ) u. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
6 |
4 5
|
syl3an3 |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( S ` suc suc N ) = ( ( S ` suc N ) u. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
7 |
|
orc |
|- ( s e. ( S ` suc N ) -> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
8 |
7
|
a1i |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( s e. ( S ` suc N ) -> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
9 |
2
|
eqeq2i |
|- ( y = A <-> y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) |
10 |
9
|
anbi2i |
|- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
11 |
10
|
rexbii |
|- ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
12 |
3
|
eqeq2i |
|- ( y = B <-> y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) |
13 |
12
|
anbi2i |
|- ( ( x = A.g i ( 1st ` u ) /\ y = B ) <-> ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
14 |
13
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
15 |
11 14
|
orbi12i |
|- ( ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
16 |
15
|
rexbii |
|- ( E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
17 |
16
|
bicomi |
|- ( E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
18 |
|
3simpa |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( M e. V /\ E e. W ) ) |
19 |
4
|
ancri |
|- ( N e. _om -> ( suc N e. _om /\ N e. _om ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( suc N e. _om /\ N e. _om ) ) |
21 |
18 20
|
jca |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) ) |
22 |
|
sssucid |
|- N C_ suc N |
23 |
22
|
a1i |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> N C_ suc N ) |
24 |
1
|
satfsschain |
|- ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) -> ( N C_ suc N -> ( S ` N ) C_ ( S ` suc N ) ) ) |
25 |
24
|
imp |
|- ( ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) /\ N C_ suc N ) -> ( S ` N ) C_ ( S ` suc N ) ) |
26 |
21 23 25
|
syl2an2r |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( S ` N ) C_ ( S ` suc N ) ) |
27 |
|
undif |
|- ( ( S ` N ) C_ ( S ` suc N ) <-> ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) = ( S ` suc N ) ) |
28 |
26 27
|
sylib |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) = ( S ` suc N ) ) |
29 |
28
|
eqcomd |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( S ` suc N ) = ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) ) |
30 |
29
|
rexeqdv |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> E. u e. ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) |
31 |
|
rexun |
|- ( E. u e. ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) |
32 |
30 31
|
bitrdi |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) ) |
33 |
17 32
|
syl5bb |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) ) |
34 |
|
r19.43 |
|- ( E. u e. ( S ` N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
35 |
22
|
a1i |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> N C_ suc N ) |
36 |
21 35
|
jca |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) /\ N C_ suc N ) ) |
37 |
36 25
|
syl |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( S ` N ) C_ ( S ` suc N ) ) |
38 |
37
|
adantr |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( S ` N ) C_ ( S ` suc N ) ) |
39 |
38 27
|
sylib |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) = ( S ` suc N ) ) |
40 |
39
|
eqcomd |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( S ` suc N ) = ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) ) |
41 |
40
|
rexeqdv |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. v e. ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
42 |
|
rexun |
|- ( E. v e. ( ( S ` N ) u. ( ( S ` suc N ) \ ( S ` N ) ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
43 |
41 42
|
bitrdi |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) |
44 |
43
|
rexbidv |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) |
45 |
44
|
orbi1d |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( ( E. u e. ( S ` N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) |
46 |
|
r19.43 |
|- ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) <-> ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
47 |
46
|
orbi1i |
|- ( ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
48 |
|
or32 |
|- ( ( ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
49 |
|
r19.43 |
|- ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
50 |
49
|
bicomi |
|- ( ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
51 |
50
|
orbi1i |
|- ( ( ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
52 |
48 51
|
bitri |
|- ( ( ( E. u e. ( S ` N ) E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
53 |
47 52
|
bitri |
|- ( ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
54 |
45 53
|
bitrdi |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( ( E. u e. ( S ` N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. u e. ( S ` N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) |
55 |
34 54
|
syl5bb |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) <-> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) |
56 |
|
animorr |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) |
57 |
1
|
satfvsuc |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
58 |
57
|
eleq2d |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( s e. ( S ` suc N ) <-> s e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) |
59 |
58
|
adantr |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( s e. ( S ` suc N ) <-> s e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) |
60 |
|
eleq1 |
|- ( s = <. x , y >. -> ( s e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> <. x , y >. e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) |
61 |
60
|
adantl |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( s e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> <. x , y >. e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) |
62 |
|
elun |
|- ( <. x , y >. e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( <. x , y >. e. ( S ` N ) \/ <. x , y >. e. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
63 |
|
opabidw |
|- ( <. x , y >. e. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
64 |
63
|
orbi2i |
|- ( ( <. x , y >. e. ( S ` N ) \/ <. x , y >. e. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
65 |
62 64
|
bitri |
|- ( <. x , y >. e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
66 |
61 65
|
bitrdi |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( s e. ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
67 |
59 66
|
bitrd |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( s e. ( S ` suc N ) <-> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
68 |
2
|
eqcomi |
|- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = A |
69 |
68
|
eqeq2i |
|- ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> y = A ) |
70 |
69
|
anbi2i |
|- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) |
71 |
70
|
rexbii |
|- ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) |
72 |
3
|
eqcomi |
|- { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = B |
73 |
72
|
eqeq2i |
|- ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> y = B ) |
74 |
73
|
anbi2i |
|- ( ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ y = B ) ) |
75 |
74
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) |
76 |
71 75
|
orbi12i |
|- ( ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
77 |
76
|
rexbii |
|- ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
78 |
77
|
a1i |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) |
79 |
78
|
orbi2d |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) <-> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) ) |
80 |
67 79
|
bitrd |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( s e. ( S ` suc N ) <-> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) ) |
81 |
80
|
adantr |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> ( s e. ( S ` suc N ) <-> ( <. x , y >. e. ( S ` N ) \/ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) ) |
82 |
56 81
|
mpbird |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> s e. ( S ` suc N ) ) |
83 |
82
|
orcd |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
84 |
83
|
ex |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
85 |
|
simplr |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> s = <. x , y >. ) |
86 |
|
animorr |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
87 |
85 86
|
jca |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) |
88 |
87
|
olcd |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
89 |
88
|
ex |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
90 |
84 89
|
jaod |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
91 |
55 90
|
sylbid |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
92 |
|
simplr |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> s = <. x , y >. ) |
93 |
|
orc |
|- ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
94 |
93
|
adantl |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
95 |
92 94
|
jca |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) |
96 |
95
|
olcd |
|- ( ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) /\ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
97 |
96
|
ex |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
98 |
91 97
|
jaod |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( ( E. u e. ( S ` N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
99 |
33 98
|
sylbid |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ s = <. x , y >. ) -> ( E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
100 |
99
|
expimpd |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
101 |
100
|
2eximdv |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> E. x E. y ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
102 |
|
19.45v |
|- ( E. y ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) <-> ( s e. ( S ` suc N ) \/ E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
103 |
102
|
exbii |
|- ( E. x E. y ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) <-> E. x ( s e. ( S ` suc N ) \/ E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
104 |
|
19.45v |
|- ( E. x ( s e. ( S ` suc N ) \/ E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) <-> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
105 |
103 104
|
bitri |
|- ( E. x E. y ( s e. ( S ` suc N ) \/ ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) <-> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
106 |
101 105
|
syl6ib |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
107 |
8 106
|
jaod |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) -> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
108 |
|
difss |
|- ( ( S ` suc N ) \ ( S ` N ) ) C_ ( S ` suc N ) |
109 |
|
ssrexv |
|- ( ( ( S ` suc N ) \ ( S ` N ) ) C_ ( S ` suc N ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) |
110 |
108 109
|
ax-mp |
|- ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) |
111 |
110
|
a1i |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) ) ) |
112 |
111 16
|
syl6ib |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) -> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
113 |
|
ssrexv |
|- ( ( S ` N ) C_ ( S ` suc N ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) -> E. u e. ( S ` suc N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
114 |
37 113
|
syl |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) -> E. u e. ( S ` suc N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) |
115 |
10
|
2rexbii |
|- ( E. u e. ( S ` suc N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) <-> E. u e. ( S ` suc N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
116 |
114 115
|
syl6ib |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) -> E. u e. ( S ` suc N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
117 |
116
|
imp |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> E. u e. ( S ` suc N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
118 |
|
ssrexv |
|- ( ( ( S ` suc N ) \ ( S ` N ) ) C_ ( S ` suc N ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
119 |
108 118
|
ax-mp |
|- ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
120 |
119
|
reximi |
|- ( E. u e. ( S ` suc N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> E. u e. ( S ` suc N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
121 |
117 120
|
syl |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> E. u e. ( S ` suc N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
122 |
121
|
orcd |
|- ( ( ( M e. V /\ E e. W /\ N e. _om ) /\ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> ( E. u e. ( S ` suc N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. u e. ( S ` suc N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
123 |
122
|
ex |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) -> ( E. u e. ( S ` suc N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. u e. ( S ` suc N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
124 |
|
r19.43 |
|- ( E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. u e. ( S ` suc N ) E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. u e. ( S ` suc N ) E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
125 |
123 124
|
syl6ibr |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) -> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
126 |
112 125
|
jaod |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) -> E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
127 |
126
|
anim2d |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) -> ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
128 |
127
|
2eximdv |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) -> E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
129 |
128
|
orim2d |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) -> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) ) |
130 |
107 129
|
impbid |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) <-> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) ) |
131 |
|
elun |
|- ( s e. ( ( S ` suc N ) u. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( s e. ( S ` suc N ) \/ s e. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
132 |
|
elopab |
|- ( s e. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
133 |
132
|
orbi2i |
|- ( ( s e. ( S ` suc N ) \/ s e. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
134 |
131 133
|
bitri |
|- ( s e. ( ( S ` suc N ) u. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
135 |
|
elun |
|- ( s e. ( ( S ` suc N ) u. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) <-> ( s e. ( S ` suc N ) \/ s e. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) ) |
136 |
|
elopab |
|- ( s e. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } <-> E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) |
137 |
136
|
orbi2i |
|- ( ( s e. ( S ` suc N ) \/ s e. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) <-> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
138 |
135 137
|
bitri |
|- ( s e. ( ( S ` suc N ) u. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) <-> ( s e. ( S ` suc N ) \/ E. x E. y ( s = <. x , y >. /\ ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) ) ) ) |
139 |
130 134 138
|
3bitr4g |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( s e. ( ( S ` suc N ) u. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> s e. ( ( S ` suc N ) u. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) ) ) |
140 |
139
|
eqrdv |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( S ` suc N ) u. { <. x , y >. | E. u e. ( S ` suc N ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( ( S ` suc N ) u. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) ) |
141 |
6 140
|
eqtrd |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( S ` suc suc N ) = ( ( S ` suc N ) u. { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) ) |