| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfbrsuc.s |  |-  S = ( M Sat E ) | 
						
							| 2 |  | satfbrsuc.p |  |-  P = ( S ` N ) | 
						
							| 3 | 1 | satfvsuc |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 4 | 3 | 3expa |  |-  ( ( ( M e. V /\ E e. W ) /\ N e. _om ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 6 | 5 | breqd |  |-  ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( S ` suc N ) B <-> A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B ) ) | 
						
							| 7 |  | brun |  |-  ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A ( S ` N ) B \/ A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B ) ) | 
						
							| 8 | 2 | eqcomi |  |-  ( S ` N ) = P | 
						
							| 9 | 8 | breqi |  |-  ( A ( S ` N ) B <-> A P B ) | 
						
							| 10 | 9 | a1i |  |-  ( ( A e. X /\ B e. Y ) -> ( A ( S ` N ) B <-> A P B ) ) | 
						
							| 11 |  | eqeq1 |  |-  ( x = A -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> A = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) | 
						
							| 12 |  | eqeq1 |  |-  ( y = B -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 13 | 11 12 | bi2anan9 |  |-  ( ( x = A /\ y = B ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) | 
						
							| 14 | 13 | rexbidv |  |-  ( ( x = A /\ y = B ) -> ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( x = A -> ( x = A.g i ( 1st ` u ) <-> A = A.g i ( 1st ` u ) ) ) | 
						
							| 16 |  | eqeq1 |  |-  ( y = B -> ( y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 17 | 15 16 | bi2anan9 |  |-  ( ( x = A /\ y = B ) -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 18 | 17 | rexbidv |  |-  ( ( x = A /\ y = B ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 19 | 14 18 | orbi12d |  |-  ( ( x = A /\ y = B ) -> ( ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 20 | 19 | rexbidv |  |-  ( ( x = A /\ y = B ) -> ( E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 21 | 8 | rexeqi |  |-  ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 22 | 21 | orbi1i |  |-  ( ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 23 | 8 22 | rexeqbii |  |-  ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 24 | 23 | opabbii |  |-  { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { <. x , y >. | E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } | 
						
							| 25 | 20 24 | brabga |  |-  ( ( A e. X /\ B e. Y ) -> ( A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B <-> E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) | 
						
							| 26 | 10 25 | orbi12d |  |-  ( ( A e. X /\ B e. Y ) -> ( ( A ( S ` N ) B \/ A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B ) <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) | 
						
							| 27 | 7 26 | bitrid |  |-  ( ( A e. X /\ B e. Y ) -> ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) | 
						
							| 28 | 27 | 3ad2ant3 |  |-  ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) | 
						
							| 29 | 6 28 | bitrd |  |-  ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( S ` suc N ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |