Step |
Hyp |
Ref |
Expression |
1 |
|
selvffval.i |
|- ( ph -> I e. V ) |
2 |
|
selvffval.r |
|- ( ph -> R e. W ) |
3 |
|
df-selv |
|- selectVars = ( i e. _V , r e. _V |-> ( j e. ~P i |-> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) ) ) |
4 |
3
|
a1i |
|- ( ph -> selectVars = ( i e. _V , r e. _V |-> ( j e. ~P i |-> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) ) ) ) |
5 |
|
pweq |
|- ( i = I -> ~P i = ~P I ) |
6 |
5
|
adantr |
|- ( ( i = I /\ r = R ) -> ~P i = ~P I ) |
7 |
|
oveq12 |
|- ( ( i = I /\ r = R ) -> ( i mPoly r ) = ( I mPoly R ) ) |
8 |
7
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = ( Base ` ( I mPoly R ) ) ) |
9 |
|
difeq1 |
|- ( i = I -> ( i \ j ) = ( I \ j ) ) |
10 |
9
|
adantr |
|- ( ( i = I /\ r = R ) -> ( i \ j ) = ( I \ j ) ) |
11 |
|
simpr |
|- ( ( i = I /\ r = R ) -> r = R ) |
12 |
10 11
|
oveq12d |
|- ( ( i = I /\ r = R ) -> ( ( i \ j ) mPoly r ) = ( ( I \ j ) mPoly R ) ) |
13 |
|
oveq1 |
|- ( i = I -> ( i evalSub t ) = ( I evalSub t ) ) |
14 |
13
|
adantr |
|- ( ( i = I /\ r = R ) -> ( i evalSub t ) = ( I evalSub t ) ) |
15 |
14
|
fveq1d |
|- ( ( i = I /\ r = R ) -> ( ( i evalSub t ) ` ran d ) = ( ( I evalSub t ) ` ran d ) ) |
16 |
15
|
fveq1d |
|- ( ( i = I /\ r = R ) -> ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) = ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ) |
17 |
|
simpl |
|- ( ( i = I /\ r = R ) -> i = I ) |
18 |
10 11
|
oveq12d |
|- ( ( i = I /\ r = R ) -> ( ( i \ j ) mVar r ) = ( ( I \ j ) mVar R ) ) |
19 |
18
|
fveq1d |
|- ( ( i = I /\ r = R ) -> ( ( ( i \ j ) mVar r ) ` x ) = ( ( ( I \ j ) mVar R ) ` x ) ) |
20 |
19
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) = ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) |
21 |
20
|
ifeq2d |
|- ( ( i = I /\ r = R ) -> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) = if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) |
22 |
17 21
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) = ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) |
23 |
16 22
|
fveq12d |
|- ( ( i = I /\ r = R ) -> ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) = ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) |
24 |
23
|
csbeq2dv |
|- ( ( i = I /\ r = R ) -> [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) = [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) |
25 |
24
|
csbeq2dv |
|- ( ( i = I /\ r = R ) -> [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) = [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) |
26 |
25
|
csbeq2dv |
|- ( ( i = I /\ r = R ) -> [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) = [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) |
27 |
12 26
|
csbeq12dv |
|- ( ( i = I /\ r = R ) -> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) = [_ ( ( I \ j ) mPoly R ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) |
28 |
8 27
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) = ( f e. ( Base ` ( I mPoly R ) ) |-> [_ ( ( I \ j ) mPoly R ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) ) |
29 |
6 28
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( j e. ~P i |-> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) ) = ( j e. ~P I |-> ( f e. ( Base ` ( I mPoly R ) ) |-> [_ ( ( I \ j ) mPoly R ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) ) ) |
30 |
29
|
adantl |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> ( j e. ~P i |-> ( f e. ( Base ` ( i mPoly r ) ) |-> [_ ( ( i \ j ) mPoly r ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( i evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. i |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( i \ j ) mVar r ) ` x ) ) ) ) ) ) ) = ( j e. ~P I |-> ( f e. ( Base ` ( I mPoly R ) ) |-> [_ ( ( I \ j ) mPoly R ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) ) ) |
31 |
1
|
elexd |
|- ( ph -> I e. _V ) |
32 |
2
|
elexd |
|- ( ph -> R e. _V ) |
33 |
1
|
pwexd |
|- ( ph -> ~P I e. _V ) |
34 |
33
|
mptexd |
|- ( ph -> ( j e. ~P I |-> ( f e. ( Base ` ( I mPoly R ) ) |-> [_ ( ( I \ j ) mPoly R ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) ) e. _V ) |
35 |
4 30 31 32 34
|
ovmpod |
|- ( ph -> ( I selectVars R ) = ( j e. ~P I |-> ( f e. ( Base ` ( I mPoly R ) ) |-> [_ ( ( I \ j ) mPoly R ) / u ]_ [_ ( j mPoly u ) / t ]_ [_ ( algSc ` t ) / c ]_ [_ ( c o. ( algSc ` u ) ) / d ]_ ( ( ( ( I evalSub t ) ` ran d ) ` ( d o. f ) ) ` ( x e. I |-> if ( x e. j , ( ( j mVar u ) ` x ) , ( c ` ( ( ( I \ j ) mVar R ) ` x ) ) ) ) ) ) ) ) |