Metamath Proof Explorer


Theorem setrec2mpt

Description: Version of setrec2 where F is defined using maps-to notation. Deduction form is omitted in the second hypothesis for simplicity. In practice, nothing important is lost since we are only interested in one choice of A , S , and V at a time. However, we are interested in what happens when C varies, so deduction form is used in the third hypothesis. (Contributed by Emmett Weisz, 4-Jun-2024)

Ref Expression
Hypotheses setrec2mpt.1
|- B = setrecs ( ( a e. A |-> S ) )
setrec2mpt.2
|- ( a e. A -> S e. V )
setrec2mpt.3
|- ( ph -> A. a ( a C_ C -> S C_ C ) )
Assertion setrec2mpt
|- ( ph -> B C_ C )

Proof

Step Hyp Ref Expression
1 setrec2mpt.1
 |-  B = setrecs ( ( a e. A |-> S ) )
2 setrec2mpt.2
 |-  ( a e. A -> S e. V )
3 setrec2mpt.3
 |-  ( ph -> A. a ( a C_ C -> S C_ C ) )
4 nfmpt1
 |-  F/_ a ( a e. A |-> S )
5 eqid
 |-  ( a e. A |-> S ) = ( a e. A |-> S )
6 5 fvmpt2
 |-  ( ( a e. A /\ S e. V ) -> ( ( a e. A |-> S ) ` a ) = S )
7 eqimss
 |-  ( ( ( a e. A |-> S ) ` a ) = S -> ( ( a e. A |-> S ) ` a ) C_ S )
8 6 7 syl
 |-  ( ( a e. A /\ S e. V ) -> ( ( a e. A |-> S ) ` a ) C_ S )
9 2 8 mpdan
 |-  ( a e. A -> ( ( a e. A |-> S ) ` a ) C_ S )
10 5 fvmptndm
 |-  ( -. a e. A -> ( ( a e. A |-> S ) ` a ) = (/) )
11 0ss
 |-  (/) C_ S
12 10 11 eqsstrdi
 |-  ( -. a e. A -> ( ( a e. A |-> S ) ` a ) C_ S )
13 9 12 pm2.61i
 |-  ( ( a e. A |-> S ) ` a ) C_ S
14 sstr2
 |-  ( ( ( a e. A |-> S ) ` a ) C_ S -> ( S C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) )
15 13 14 ax-mp
 |-  ( S C_ C -> ( ( a e. A |-> S ) ` a ) C_ C )
16 15 imim2i
 |-  ( ( a C_ C -> S C_ C ) -> ( a C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) )
17 3 16 sylg
 |-  ( ph -> A. a ( a C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) )
18 4 1 17 setrec2
 |-  ( ph -> B C_ C )