Step |
Hyp |
Ref |
Expression |
1 |
|
setrec2mpt.1 |
|- B = setrecs ( ( a e. A |-> S ) ) |
2 |
|
setrec2mpt.2 |
|- ( a e. A -> S e. V ) |
3 |
|
setrec2mpt.3 |
|- ( ph -> A. a ( a C_ C -> S C_ C ) ) |
4 |
|
nfmpt1 |
|- F/_ a ( a e. A |-> S ) |
5 |
|
eqid |
|- ( a e. A |-> S ) = ( a e. A |-> S ) |
6 |
5
|
fvmpt2 |
|- ( ( a e. A /\ S e. V ) -> ( ( a e. A |-> S ) ` a ) = S ) |
7 |
|
eqimss |
|- ( ( ( a e. A |-> S ) ` a ) = S -> ( ( a e. A |-> S ) ` a ) C_ S ) |
8 |
6 7
|
syl |
|- ( ( a e. A /\ S e. V ) -> ( ( a e. A |-> S ) ` a ) C_ S ) |
9 |
2 8
|
mpdan |
|- ( a e. A -> ( ( a e. A |-> S ) ` a ) C_ S ) |
10 |
5
|
fvmptndm |
|- ( -. a e. A -> ( ( a e. A |-> S ) ` a ) = (/) ) |
11 |
|
0ss |
|- (/) C_ S |
12 |
10 11
|
eqsstrdi |
|- ( -. a e. A -> ( ( a e. A |-> S ) ` a ) C_ S ) |
13 |
9 12
|
pm2.61i |
|- ( ( a e. A |-> S ) ` a ) C_ S |
14 |
|
sstr2 |
|- ( ( ( a e. A |-> S ) ` a ) C_ S -> ( S C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) ) |
15 |
13 14
|
ax-mp |
|- ( S C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) |
16 |
15
|
imim2i |
|- ( ( a C_ C -> S C_ C ) -> ( a C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) ) |
17 |
3 16
|
sylg |
|- ( ph -> A. a ( a C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) ) |
18 |
4 1 17
|
setrec2 |
|- ( ph -> B C_ C ) |