| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setrec2mpt.1 |  |-  B = setrecs ( ( a e. A |-> S ) ) | 
						
							| 2 |  | setrec2mpt.2 |  |-  ( a e. A -> S e. V ) | 
						
							| 3 |  | setrec2mpt.3 |  |-  ( ph -> A. a ( a C_ C -> S C_ C ) ) | 
						
							| 4 |  | nfmpt1 |  |-  F/_ a ( a e. A |-> S ) | 
						
							| 5 |  | eqid |  |-  ( a e. A |-> S ) = ( a e. A |-> S ) | 
						
							| 6 | 5 | fvmpt2 |  |-  ( ( a e. A /\ S e. V ) -> ( ( a e. A |-> S ) ` a ) = S ) | 
						
							| 7 |  | eqimss |  |-  ( ( ( a e. A |-> S ) ` a ) = S -> ( ( a e. A |-> S ) ` a ) C_ S ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( a e. A /\ S e. V ) -> ( ( a e. A |-> S ) ` a ) C_ S ) | 
						
							| 9 | 2 8 | mpdan |  |-  ( a e. A -> ( ( a e. A |-> S ) ` a ) C_ S ) | 
						
							| 10 | 5 | fvmptndm |  |-  ( -. a e. A -> ( ( a e. A |-> S ) ` a ) = (/) ) | 
						
							| 11 |  | 0ss |  |-  (/) C_ S | 
						
							| 12 | 10 11 | eqsstrdi |  |-  ( -. a e. A -> ( ( a e. A |-> S ) ` a ) C_ S ) | 
						
							| 13 | 9 12 | pm2.61i |  |-  ( ( a e. A |-> S ) ` a ) C_ S | 
						
							| 14 |  | sstr2 |  |-  ( ( ( a e. A |-> S ) ` a ) C_ S -> ( S C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ( S C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) | 
						
							| 16 | 15 | imim2i |  |-  ( ( a C_ C -> S C_ C ) -> ( a C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) ) | 
						
							| 17 | 3 16 | sylg |  |-  ( ph -> A. a ( a C_ C -> ( ( a e. A |-> S ) ` a ) C_ C ) ) | 
						
							| 18 | 4 1 17 | setrec2 |  |-  ( ph -> B C_ C ) |