Metamath Proof Explorer


Theorem setrec2mpt

Description: Version of setrec2 where F is defined using maps-to notation. Deduction form is omitted in the second hypothesis for simplicity. In practice, nothing important is lost since we are only interested in one choice of A , S , and V at a time. However, we are interested in what happens when C varies, so deduction form is used in the third hypothesis. (Contributed by Emmett Weisz, 4-Jun-2024)

Ref Expression
Hypotheses setrec2mpt.1 B=setrecsaAS
setrec2mpt.2 aASV
setrec2mpt.3 φaaCSC
Assertion setrec2mpt φBC

Proof

Step Hyp Ref Expression
1 setrec2mpt.1 B=setrecsaAS
2 setrec2mpt.2 aASV
3 setrec2mpt.3 φaaCSC
4 nfmpt1 _aaAS
5 eqid aAS=aAS
6 5 fvmpt2 aASVaASa=S
7 eqimss aASa=SaASaS
8 6 7 syl aASVaASaS
9 2 8 mpdan aAaASaS
10 5 fvmptndm ¬aAaASa=
11 0ss S
12 10 11 eqsstrdi ¬aAaASaS
13 9 12 pm2.61i aASaS
14 sstr2 aASaSSCaASaC
15 13 14 ax-mp SCaASaC
16 15 imim2i aCSCaCaASaC
17 3 16 sylg φaaCaASaC
18 4 1 17 setrec2 φBC