| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setrec2mpt.1 | ⊢ 𝐵  =  setrecs ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ) | 
						
							| 2 |  | setrec2mpt.2 | ⊢ ( 𝑎  ∈  𝐴  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | setrec2mpt.3 | ⊢ ( 𝜑  →  ∀ 𝑎 ( 𝑎  ⊆  𝐶  →  𝑆  ⊆  𝐶 ) ) | 
						
							| 4 |  | nfmpt1 | ⊢ Ⅎ 𝑎 ( 𝑎  ∈  𝐴  ↦  𝑆 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑎  ∈  𝐴  ↦  𝑆 )  =  ( 𝑎  ∈  𝐴  ↦  𝑆 ) | 
						
							| 6 | 5 | fvmpt2 | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑆  ∈  𝑉 )  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  =  𝑆 ) | 
						
							| 7 |  | eqimss | ⊢ ( ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  =  𝑆  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝑆 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑆  ∈  𝑉 )  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝑆 ) | 
						
							| 9 | 2 8 | mpdan | ⊢ ( 𝑎  ∈  𝐴  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝑆 ) | 
						
							| 10 | 5 | fvmptndm | ⊢ ( ¬  𝑎  ∈  𝐴  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  =  ∅ ) | 
						
							| 11 |  | 0ss | ⊢ ∅  ⊆  𝑆 | 
						
							| 12 | 10 11 | eqsstrdi | ⊢ ( ¬  𝑎  ∈  𝐴  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝑆 ) | 
						
							| 13 | 9 12 | pm2.61i | ⊢ ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝑆 | 
						
							| 14 |  | sstr2 | ⊢ ( ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝑆  →  ( 𝑆  ⊆  𝐶  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝐶 ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 𝑆  ⊆  𝐶  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝐶 ) | 
						
							| 16 | 15 | imim2i | ⊢ ( ( 𝑎  ⊆  𝐶  →  𝑆  ⊆  𝐶 )  →  ( 𝑎  ⊆  𝐶  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝐶 ) ) | 
						
							| 17 | 3 16 | sylg | ⊢ ( 𝜑  →  ∀ 𝑎 ( 𝑎  ⊆  𝐶  →  ( ( 𝑎  ∈  𝐴  ↦  𝑆 ) ‘ 𝑎 )  ⊆  𝐶 ) ) | 
						
							| 18 | 4 1 17 | setrec2 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐶 ) |