| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setrec2mpt.1 |
⊢ 𝐵 = setrecs ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ) |
| 2 |
|
setrec2mpt.2 |
⊢ ( 𝑎 ∈ 𝐴 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
setrec2mpt.3 |
⊢ ( 𝜑 → ∀ 𝑎 ( 𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶 ) ) |
| 4 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) = ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) |
| 6 |
5
|
fvmpt2 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) = 𝑆 ) |
| 7 |
|
eqimss |
⊢ ( ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) = 𝑆 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝑆 ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝑆 ) |
| 9 |
2 8
|
mpdan |
⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝑆 ) |
| 10 |
5
|
fvmptndm |
⊢ ( ¬ 𝑎 ∈ 𝐴 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) = ∅ ) |
| 11 |
|
0ss |
⊢ ∅ ⊆ 𝑆 |
| 12 |
10 11
|
eqsstrdi |
⊢ ( ¬ 𝑎 ∈ 𝐴 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝑆 ) |
| 13 |
9 12
|
pm2.61i |
⊢ ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝑆 |
| 14 |
|
sstr2 |
⊢ ( ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝑆 → ( 𝑆 ⊆ 𝐶 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝐶 ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( 𝑆 ⊆ 𝐶 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝐶 ) |
| 16 |
15
|
imim2i |
⊢ ( ( 𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶 ) → ( 𝑎 ⊆ 𝐶 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝐶 ) ) |
| 17 |
3 16
|
sylg |
⊢ ( 𝜑 → ∀ 𝑎 ( 𝑎 ⊆ 𝐶 → ( ( 𝑎 ∈ 𝐴 ↦ 𝑆 ) ‘ 𝑎 ) ⊆ 𝐶 ) ) |
| 18 |
4 1 17
|
setrec2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |