Metamath Proof Explorer


Theorem setrecsss

Description: The setrecs operator respects the subset relation between two functions F and G . (Contributed by Emmett Weisz, 13-Mar-2022)

Ref Expression
Hypotheses setrecsss.1
|- ( ph -> Fun G )
setrecsss.2
|- ( ph -> F C_ G )
Assertion setrecsss
|- ( ph -> setrecs ( F ) C_ setrecs ( G ) )

Proof

Step Hyp Ref Expression
1 setrecsss.1
 |-  ( ph -> Fun G )
2 setrecsss.2
 |-  ( ph -> F C_ G )
3 eqid
 |-  setrecs ( F ) = setrecs ( F )
4 imass1
 |-  ( F C_ G -> ( F " { x } ) C_ ( G " { x } ) )
5 2 4 syl
 |-  ( ph -> ( F " { x } ) C_ ( G " { x } ) )
6 5 unissd
 |-  ( ph -> U. ( F " { x } ) C_ U. ( G " { x } ) )
7 funss
 |-  ( F C_ G -> ( Fun G -> Fun F ) )
8 2 1 7 sylc
 |-  ( ph -> Fun F )
9 funfv
 |-  ( Fun F -> ( F ` x ) = U. ( F " { x } ) )
10 8 9 syl
 |-  ( ph -> ( F ` x ) = U. ( F " { x } ) )
11 funfv
 |-  ( Fun G -> ( G ` x ) = U. ( G " { x } ) )
12 1 11 syl
 |-  ( ph -> ( G ` x ) = U. ( G " { x } ) )
13 6 10 12 3sstr4d
 |-  ( ph -> ( F ` x ) C_ ( G ` x ) )
14 13 adantr
 |-  ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ ( G ` x ) )
15 eqid
 |-  setrecs ( G ) = setrecs ( G )
16 vex
 |-  x e. _V
17 16 a1i
 |-  ( ( ph /\ x C_ setrecs ( G ) ) -> x e. _V )
18 simpr
 |-  ( ( ph /\ x C_ setrecs ( G ) ) -> x C_ setrecs ( G ) )
19 15 17 18 setrec1
 |-  ( ( ph /\ x C_ setrecs ( G ) ) -> ( G ` x ) C_ setrecs ( G ) )
20 14 19 sstrd
 |-  ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ setrecs ( G ) )
21 20 ex
 |-  ( ph -> ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) )
22 21 alrimiv
 |-  ( ph -> A. x ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) )
23 3 22 setrec2v
 |-  ( ph -> setrecs ( F ) C_ setrecs ( G ) )