| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setrecsss.1 |  |-  ( ph -> Fun G ) | 
						
							| 2 |  | setrecsss.2 |  |-  ( ph -> F C_ G ) | 
						
							| 3 |  | eqid |  |-  setrecs ( F ) = setrecs ( F ) | 
						
							| 4 |  | imass1 |  |-  ( F C_ G -> ( F " { x } ) C_ ( G " { x } ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( ph -> ( F " { x } ) C_ ( G " { x } ) ) | 
						
							| 6 | 5 | unissd |  |-  ( ph -> U. ( F " { x } ) C_ U. ( G " { x } ) ) | 
						
							| 7 |  | funss |  |-  ( F C_ G -> ( Fun G -> Fun F ) ) | 
						
							| 8 | 2 1 7 | sylc |  |-  ( ph -> Fun F ) | 
						
							| 9 |  | funfv |  |-  ( Fun F -> ( F ` x ) = U. ( F " { x } ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( F ` x ) = U. ( F " { x } ) ) | 
						
							| 11 |  | funfv |  |-  ( Fun G -> ( G ` x ) = U. ( G " { x } ) ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> ( G ` x ) = U. ( G " { x } ) ) | 
						
							| 13 | 6 10 12 | 3sstr4d |  |-  ( ph -> ( F ` x ) C_ ( G ` x ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ ( G ` x ) ) | 
						
							| 15 |  | eqid |  |-  setrecs ( G ) = setrecs ( G ) | 
						
							| 16 |  | vex |  |-  x e. _V | 
						
							| 17 | 16 | a1i |  |-  ( ( ph /\ x C_ setrecs ( G ) ) -> x e. _V ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ x C_ setrecs ( G ) ) -> x C_ setrecs ( G ) ) | 
						
							| 19 | 15 17 18 | setrec1 |  |-  ( ( ph /\ x C_ setrecs ( G ) ) -> ( G ` x ) C_ setrecs ( G ) ) | 
						
							| 20 | 14 19 | sstrd |  |-  ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ setrecs ( G ) ) | 
						
							| 21 | 20 | ex |  |-  ( ph -> ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) ) | 
						
							| 22 | 21 | alrimiv |  |-  ( ph -> A. x ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) ) | 
						
							| 23 | 3 22 | setrec2v |  |-  ( ph -> setrecs ( F ) C_ setrecs ( G ) ) |