| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setrecsss.1 |
|- ( ph -> Fun G ) |
| 2 |
|
setrecsss.2 |
|- ( ph -> F C_ G ) |
| 3 |
|
eqid |
|- setrecs ( F ) = setrecs ( F ) |
| 4 |
|
imass1 |
|- ( F C_ G -> ( F " { x } ) C_ ( G " { x } ) ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( F " { x } ) C_ ( G " { x } ) ) |
| 6 |
5
|
unissd |
|- ( ph -> U. ( F " { x } ) C_ U. ( G " { x } ) ) |
| 7 |
|
funss |
|- ( F C_ G -> ( Fun G -> Fun F ) ) |
| 8 |
2 1 7
|
sylc |
|- ( ph -> Fun F ) |
| 9 |
|
funfv |
|- ( Fun F -> ( F ` x ) = U. ( F " { x } ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( F ` x ) = U. ( F " { x } ) ) |
| 11 |
|
funfv |
|- ( Fun G -> ( G ` x ) = U. ( G " { x } ) ) |
| 12 |
1 11
|
syl |
|- ( ph -> ( G ` x ) = U. ( G " { x } ) ) |
| 13 |
6 10 12
|
3sstr4d |
|- ( ph -> ( F ` x ) C_ ( G ` x ) ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ ( G ` x ) ) |
| 15 |
|
eqid |
|- setrecs ( G ) = setrecs ( G ) |
| 16 |
|
vex |
|- x e. _V |
| 17 |
16
|
a1i |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> x e. _V ) |
| 18 |
|
simpr |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> x C_ setrecs ( G ) ) |
| 19 |
15 17 18
|
setrec1 |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> ( G ` x ) C_ setrecs ( G ) ) |
| 20 |
14 19
|
sstrd |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ setrecs ( G ) ) |
| 21 |
20
|
ex |
|- ( ph -> ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) ) |
| 22 |
21
|
alrimiv |
|- ( ph -> A. x ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) ) |
| 23 |
3 22
|
setrec2v |
|- ( ph -> setrecs ( F ) C_ setrecs ( G ) ) |