Step |
Hyp |
Ref |
Expression |
1 |
|
setrecsss.1 |
|- ( ph -> Fun G ) |
2 |
|
setrecsss.2 |
|- ( ph -> F C_ G ) |
3 |
|
eqid |
|- setrecs ( F ) = setrecs ( F ) |
4 |
|
imass1 |
|- ( F C_ G -> ( F " { x } ) C_ ( G " { x } ) ) |
5 |
2 4
|
syl |
|- ( ph -> ( F " { x } ) C_ ( G " { x } ) ) |
6 |
5
|
unissd |
|- ( ph -> U. ( F " { x } ) C_ U. ( G " { x } ) ) |
7 |
|
funss |
|- ( F C_ G -> ( Fun G -> Fun F ) ) |
8 |
2 1 7
|
sylc |
|- ( ph -> Fun F ) |
9 |
|
funfv |
|- ( Fun F -> ( F ` x ) = U. ( F " { x } ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( F ` x ) = U. ( F " { x } ) ) |
11 |
|
funfv |
|- ( Fun G -> ( G ` x ) = U. ( G " { x } ) ) |
12 |
1 11
|
syl |
|- ( ph -> ( G ` x ) = U. ( G " { x } ) ) |
13 |
6 10 12
|
3sstr4d |
|- ( ph -> ( F ` x ) C_ ( G ` x ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ ( G ` x ) ) |
15 |
|
eqid |
|- setrecs ( G ) = setrecs ( G ) |
16 |
|
vex |
|- x e. _V |
17 |
16
|
a1i |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> x e. _V ) |
18 |
|
simpr |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> x C_ setrecs ( G ) ) |
19 |
15 17 18
|
setrec1 |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> ( G ` x ) C_ setrecs ( G ) ) |
20 |
14 19
|
sstrd |
|- ( ( ph /\ x C_ setrecs ( G ) ) -> ( F ` x ) C_ setrecs ( G ) ) |
21 |
20
|
ex |
|- ( ph -> ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) ) |
22 |
21
|
alrimiv |
|- ( ph -> A. x ( x C_ setrecs ( G ) -> ( F ` x ) C_ setrecs ( G ) ) ) |
23 |
3 22
|
setrec2v |
|- ( ph -> setrecs ( F ) C_ setrecs ( G ) ) |