| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setrecsss.1 |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 2 |
|
setrecsss.2 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐺 ) |
| 3 |
|
eqid |
⊢ setrecs ( 𝐹 ) = setrecs ( 𝐹 ) |
| 4 |
|
imass1 |
⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐹 “ { 𝑥 } ) ⊆ ( 𝐺 “ { 𝑥 } ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ { 𝑥 } ) ⊆ ( 𝐺 “ { 𝑥 } ) ) |
| 6 |
5
|
unissd |
⊢ ( 𝜑 → ∪ ( 𝐹 “ { 𝑥 } ) ⊆ ∪ ( 𝐺 “ { 𝑥 } ) ) |
| 7 |
|
funss |
⊢ ( 𝐹 ⊆ 𝐺 → ( Fun 𝐺 → Fun 𝐹 ) ) |
| 8 |
2 1 7
|
sylc |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 9 |
|
funfv |
⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝑥 ) = ∪ ( 𝐹 “ { 𝑥 } ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑥 ) = ∪ ( 𝐹 “ { 𝑥 } ) ) |
| 11 |
|
funfv |
⊢ ( Fun 𝐺 → ( 𝐺 ‘ 𝑥 ) = ∪ ( 𝐺 “ { 𝑥 } ) ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑥 ) = ∪ ( 𝐺 “ { 𝑥 } ) ) |
| 13 |
6 10 12
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐺 ‘ 𝑥 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐺 ‘ 𝑥 ) ) |
| 15 |
|
eqid |
⊢ setrecs ( 𝐺 ) = setrecs ( 𝐺 ) |
| 16 |
|
vex |
⊢ 𝑥 ∈ V |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( 𝐺 ) ) → 𝑥 ∈ V ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( 𝐺 ) ) → 𝑥 ⊆ setrecs ( 𝐺 ) ) |
| 19 |
15 17 18
|
setrec1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ⊆ setrecs ( 𝐺 ) ) |
| 20 |
14 19
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( 𝐺 ) ) |
| 21 |
20
|
ex |
⊢ ( 𝜑 → ( 𝑥 ⊆ setrecs ( 𝐺 ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( 𝐺 ) ) ) |
| 22 |
21
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ⊆ setrecs ( 𝐺 ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( 𝐺 ) ) ) |
| 23 |
3 22
|
setrec2v |
⊢ ( 𝜑 → setrecs ( 𝐹 ) ⊆ setrecs ( 𝐺 ) ) |