Metamath Proof Explorer


Theorem setrecsres

Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022)

Ref Expression
Hypotheses setrecsres.1 𝐵 = setrecs ( 𝐹 )
setrecsres.2 ( 𝜑 → Fun 𝐹 )
Assertion setrecsres ( 𝜑𝐵 = setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 setrecsres.1 𝐵 = setrecs ( 𝐹 )
2 setrecsres.2 ( 𝜑 → Fun 𝐹 )
3 id ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) )
4 resss ( 𝐹 ↾ 𝒫 𝐵 ) ⊆ 𝐹
5 4 a1i ( 𝜑 → ( 𝐹 ↾ 𝒫 𝐵 ) ⊆ 𝐹 )
6 2 5 setrecsss ( 𝜑 → setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ⊆ setrecs ( 𝐹 ) )
7 6 1 sseqtrrdi ( 𝜑 → setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ⊆ 𝐵 )
8 3 7 sylan9ssr ( ( 𝜑𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → 𝑥𝐵 )
9 velpw ( 𝑥 ∈ 𝒫 𝐵𝑥𝐵 )
10 fvres ( 𝑥 ∈ 𝒫 𝐵 → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
11 9 10 sylbir ( 𝑥𝐵 → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
12 8 11 syl ( ( 𝜑𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
13 eqid setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) = setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) )
14 vex 𝑥 ∈ V
15 14 a1i ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → 𝑥 ∈ V )
16 13 15 3 setrec1 ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) )
17 16 adantl ( ( 𝜑𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) )
18 12 17 eqsstrrd ( ( 𝜑𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( 𝐹𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) )
19 18 ex ( 𝜑 → ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( 𝐹𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) )
20 19 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( 𝐹𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) )
21 1 20 setrec2v ( 𝜑𝐵 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) )
22 21 7 eqssd ( 𝜑𝐵 = setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) )