Step |
Hyp |
Ref |
Expression |
1 |
|
setrecsres.1 |
⊢ 𝐵 = setrecs ( 𝐹 ) |
2 |
|
setrecsres.2 |
⊢ ( 𝜑 → Fun 𝐹 ) |
3 |
|
id |
⊢ ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
4 |
|
resss |
⊢ ( 𝐹 ↾ 𝒫 𝐵 ) ⊆ 𝐹 |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝒫 𝐵 ) ⊆ 𝐹 ) |
6 |
2 5
|
setrecsss |
⊢ ( 𝜑 → setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ⊆ setrecs ( 𝐹 ) ) |
7 |
6 1
|
sseqtrrdi |
⊢ ( 𝜑 → setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ⊆ 𝐵 ) |
8 |
3 7
|
sylan9ssr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → 𝑥 ⊆ 𝐵 ) |
9 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) |
10 |
|
fvres |
⊢ ( 𝑥 ∈ 𝒫 𝐵 → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
11 |
9 10
|
sylbir |
⊢ ( 𝑥 ⊆ 𝐵 → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
12 |
8 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
13 |
|
eqid |
⊢ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) = setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → 𝑥 ∈ V ) |
16 |
13 15 3
|
setrec1 |
⊢ ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
18 |
12 17
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) ) |
20 |
19
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) ) |
21 |
1 20
|
setrec2v |
⊢ ( 𝜑 → 𝐵 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
22 |
21 7
|
eqssd |
⊢ ( 𝜑 → 𝐵 = setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |