| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setrecsres.1 |
⊢ 𝐵 = setrecs ( 𝐹 ) |
| 2 |
|
setrecsres.2 |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 3 |
|
id |
⊢ ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
| 4 |
|
resss |
⊢ ( 𝐹 ↾ 𝒫 𝐵 ) ⊆ 𝐹 |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝒫 𝐵 ) ⊆ 𝐹 ) |
| 6 |
2 5
|
setrecsss |
⊢ ( 𝜑 → setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ⊆ setrecs ( 𝐹 ) ) |
| 7 |
6 1
|
sseqtrrdi |
⊢ ( 𝜑 → setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ⊆ 𝐵 ) |
| 8 |
3 7
|
sylan9ssr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → 𝑥 ⊆ 𝐵 ) |
| 9 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) |
| 10 |
|
fvres |
⊢ ( 𝑥 ∈ 𝒫 𝐵 → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 11 |
9 10
|
sylbir |
⊢ ( 𝑥 ⊆ 𝐵 → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 12 |
8 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 13 |
|
eqid |
⊢ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) = setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) |
| 14 |
|
vex |
⊢ 𝑥 ∈ V |
| 15 |
14
|
a1i |
⊢ ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → 𝑥 ∈ V ) |
| 16 |
13 15 3
|
setrec1 |
⊢ ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝒫 𝐵 ) ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
| 18 |
12 17
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
| 19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) ) |
| 20 |
19
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) ) |
| 21 |
1 20
|
setrec2v |
⊢ ( 𝜑 → 𝐵 ⊆ setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |
| 22 |
21 7
|
eqssd |
⊢ ( 𝜑 → 𝐵 = setrecs ( ( 𝐹 ↾ 𝒫 𝐵 ) ) ) |