Metamath Proof Explorer


Theorem setrecsres

Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022)

Ref Expression
Hypotheses setrecsres.1 B = setrecs F
setrecsres.2 φ Fun F
Assertion setrecsres φ B = setrecs F 𝒫 B

Proof

Step Hyp Ref Expression
1 setrecsres.1 B = setrecs F
2 setrecsres.2 φ Fun F
3 id x setrecs F 𝒫 B x setrecs F 𝒫 B
4 resss F 𝒫 B F
5 4 a1i φ F 𝒫 B F
6 2 5 setrecsss φ setrecs F 𝒫 B setrecs F
7 6 1 sseqtrrdi φ setrecs F 𝒫 B B
8 3 7 sylan9ssr φ x setrecs F 𝒫 B x B
9 velpw x 𝒫 B x B
10 fvres x 𝒫 B F 𝒫 B x = F x
11 9 10 sylbir x B F 𝒫 B x = F x
12 8 11 syl φ x setrecs F 𝒫 B F 𝒫 B x = F x
13 eqid setrecs F 𝒫 B = setrecs F 𝒫 B
14 vex x V
15 14 a1i x setrecs F 𝒫 B x V
16 13 15 3 setrec1 x setrecs F 𝒫 B F 𝒫 B x setrecs F 𝒫 B
17 16 adantl φ x setrecs F 𝒫 B F 𝒫 B x setrecs F 𝒫 B
18 12 17 eqsstrrd φ x setrecs F 𝒫 B F x setrecs F 𝒫 B
19 18 ex φ x setrecs F 𝒫 B F x setrecs F 𝒫 B
20 19 alrimiv φ x x setrecs F 𝒫 B F x setrecs F 𝒫 B
21 1 20 setrec2v φ B setrecs F 𝒫 B
22 21 7 eqssd φ B = setrecs F 𝒫 B