| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setrecsres.1 |
|- B = setrecs ( F ) |
| 2 |
|
setrecsres.2 |
|- ( ph -> Fun F ) |
| 3 |
|
id |
|- ( x C_ setrecs ( ( F |` ~P B ) ) -> x C_ setrecs ( ( F |` ~P B ) ) ) |
| 4 |
|
resss |
|- ( F |` ~P B ) C_ F |
| 5 |
4
|
a1i |
|- ( ph -> ( F |` ~P B ) C_ F ) |
| 6 |
2 5
|
setrecsss |
|- ( ph -> setrecs ( ( F |` ~P B ) ) C_ setrecs ( F ) ) |
| 7 |
6 1
|
sseqtrrdi |
|- ( ph -> setrecs ( ( F |` ~P B ) ) C_ B ) |
| 8 |
3 7
|
sylan9ssr |
|- ( ( ph /\ x C_ setrecs ( ( F |` ~P B ) ) ) -> x C_ B ) |
| 9 |
|
velpw |
|- ( x e. ~P B <-> x C_ B ) |
| 10 |
|
fvres |
|- ( x e. ~P B -> ( ( F |` ~P B ) ` x ) = ( F ` x ) ) |
| 11 |
9 10
|
sylbir |
|- ( x C_ B -> ( ( F |` ~P B ) ` x ) = ( F ` x ) ) |
| 12 |
8 11
|
syl |
|- ( ( ph /\ x C_ setrecs ( ( F |` ~P B ) ) ) -> ( ( F |` ~P B ) ` x ) = ( F ` x ) ) |
| 13 |
|
eqid |
|- setrecs ( ( F |` ~P B ) ) = setrecs ( ( F |` ~P B ) ) |
| 14 |
|
vex |
|- x e. _V |
| 15 |
14
|
a1i |
|- ( x C_ setrecs ( ( F |` ~P B ) ) -> x e. _V ) |
| 16 |
13 15 3
|
setrec1 |
|- ( x C_ setrecs ( ( F |` ~P B ) ) -> ( ( F |` ~P B ) ` x ) C_ setrecs ( ( F |` ~P B ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ x C_ setrecs ( ( F |` ~P B ) ) ) -> ( ( F |` ~P B ) ` x ) C_ setrecs ( ( F |` ~P B ) ) ) |
| 18 |
12 17
|
eqsstrrd |
|- ( ( ph /\ x C_ setrecs ( ( F |` ~P B ) ) ) -> ( F ` x ) C_ setrecs ( ( F |` ~P B ) ) ) |
| 19 |
18
|
ex |
|- ( ph -> ( x C_ setrecs ( ( F |` ~P B ) ) -> ( F ` x ) C_ setrecs ( ( F |` ~P B ) ) ) ) |
| 20 |
19
|
alrimiv |
|- ( ph -> A. x ( x C_ setrecs ( ( F |` ~P B ) ) -> ( F ` x ) C_ setrecs ( ( F |` ~P B ) ) ) ) |
| 21 |
1 20
|
setrec2v |
|- ( ph -> B C_ setrecs ( ( F |` ~P B ) ) ) |
| 22 |
21 7
|
eqssd |
|- ( ph -> B = setrecs ( ( F |` ~P B ) ) ) |