Metamath Proof Explorer


Theorem setrecsss

Description: The setrecs operator respects the subset relation between two functions F and G . (Contributed by Emmett Weisz, 13-Mar-2022)

Ref Expression
Hypotheses setrecsss.1 φ Fun G
setrecsss.2 φ F G
Assertion setrecsss φ setrecs F setrecs G

Proof

Step Hyp Ref Expression
1 setrecsss.1 φ Fun G
2 setrecsss.2 φ F G
3 eqid setrecs F = setrecs F
4 imass1 F G F x G x
5 2 4 syl φ F x G x
6 5 unissd φ F x G x
7 funss F G Fun G Fun F
8 2 1 7 sylc φ Fun F
9 funfv Fun F F x = F x
10 8 9 syl φ F x = F x
11 funfv Fun G G x = G x
12 1 11 syl φ G x = G x
13 6 10 12 3sstr4d φ F x G x
14 13 adantr φ x setrecs G F x G x
15 eqid setrecs G = setrecs G
16 vex x V
17 16 a1i φ x setrecs G x V
18 simpr φ x setrecs G x setrecs G
19 15 17 18 setrec1 φ x setrecs G G x setrecs G
20 14 19 sstrd φ x setrecs G F x setrecs G
21 20 ex φ x setrecs G F x setrecs G
22 21 alrimiv φ x x setrecs G F x setrecs G
23 3 22 setrec2v φ setrecs F setrecs G