| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1onn |
|- 1o e. _om |
| 2 |
|
ensn1g |
|- ( A e. _V -> { A } ~~ 1o ) |
| 3 |
|
breq2 |
|- ( x = 1o -> ( { A } ~~ x <-> { A } ~~ 1o ) ) |
| 4 |
3
|
rspcev |
|- ( ( 1o e. _om /\ { A } ~~ 1o ) -> E. x e. _om { A } ~~ x ) |
| 5 |
1 2 4
|
sylancr |
|- ( A e. _V -> E. x e. _om { A } ~~ x ) |
| 6 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
| 7 |
|
en0 |
|- ( { A } ~~ (/) <-> { A } = (/) ) |
| 8 |
|
peano1 |
|- (/) e. _om |
| 9 |
|
breq2 |
|- ( x = (/) -> ( { A } ~~ x <-> { A } ~~ (/) ) ) |
| 10 |
9
|
rspcev |
|- ( ( (/) e. _om /\ { A } ~~ (/) ) -> E. x e. _om { A } ~~ x ) |
| 11 |
8 10
|
mpan |
|- ( { A } ~~ (/) -> E. x e. _om { A } ~~ x ) |
| 12 |
7 11
|
sylbir |
|- ( { A } = (/) -> E. x e. _om { A } ~~ x ) |
| 13 |
6 12
|
sylbi |
|- ( -. A e. _V -> E. x e. _om { A } ~~ x ) |
| 14 |
5 13
|
pm2.61i |
|- E. x e. _om { A } ~~ x |
| 15 |
|
isfi |
|- ( { A } e. Fin <-> E. x e. _om { A } ~~ x ) |
| 16 |
14 15
|
mpbir |
|- { A } e. Fin |