| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( M = ( ( 2 x. N ) + 1 ) -> ( M ^ 2 ) = ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) |
| 2 |
|
2z |
|- 2 e. ZZ |
| 3 |
2
|
a1i |
|- ( N e. ZZ -> 2 e. ZZ ) |
| 4 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
| 5 |
3 4
|
zmulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
| 6 |
5
|
zcnd |
|- ( N e. ZZ -> ( 2 x. N ) e. CC ) |
| 7 |
|
binom21 |
|- ( ( 2 x. N ) e. CC -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 8 |
6 7
|
syl |
|- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 9 |
1 8
|
sylan9eqr |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( M ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 10 |
9
|
oveq1d |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( M ^ 2 ) - 1 ) = ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) ) |
| 11 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
| 12 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 13 |
11 12
|
sqmuld |
|- ( N e. ZZ -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
| 14 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 15 |
14
|
a1i |
|- ( N e. ZZ -> ( 2 ^ 2 ) = 4 ) |
| 16 |
15
|
oveq1d |
|- ( N e. ZZ -> ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) = ( 4 x. ( N ^ 2 ) ) ) |
| 17 |
13 16
|
eqtrd |
|- ( N e. ZZ -> ( ( 2 x. N ) ^ 2 ) = ( 4 x. ( N ^ 2 ) ) ) |
| 18 |
|
mulass |
|- ( ( 2 e. CC /\ 2 e. CC /\ N e. CC ) -> ( ( 2 x. 2 ) x. N ) = ( 2 x. ( 2 x. N ) ) ) |
| 19 |
18
|
eqcomd |
|- ( ( 2 e. CC /\ 2 e. CC /\ N e. CC ) -> ( 2 x. ( 2 x. N ) ) = ( ( 2 x. 2 ) x. N ) ) |
| 20 |
11 11 12 19
|
syl3anc |
|- ( N e. ZZ -> ( 2 x. ( 2 x. N ) ) = ( ( 2 x. 2 ) x. N ) ) |
| 21 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 22 |
21
|
a1i |
|- ( N e. ZZ -> ( 2 x. 2 ) = 4 ) |
| 23 |
22
|
oveq1d |
|- ( N e. ZZ -> ( ( 2 x. 2 ) x. N ) = ( 4 x. N ) ) |
| 24 |
20 23
|
eqtrd |
|- ( N e. ZZ -> ( 2 x. ( 2 x. N ) ) = ( 4 x. N ) ) |
| 25 |
17 24
|
oveq12d |
|- ( N e. ZZ -> ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 26 |
25
|
oveq1d |
|- ( N e. ZZ -> ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) = ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) ) |
| 27 |
26
|
oveq1d |
|- ( N e. ZZ -> ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) = ( ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) - 1 ) ) |
| 28 |
|
4z |
|- 4 e. ZZ |
| 29 |
28
|
a1i |
|- ( N e. ZZ -> 4 e. ZZ ) |
| 30 |
|
zsqcl |
|- ( N e. ZZ -> ( N ^ 2 ) e. ZZ ) |
| 31 |
29 30
|
zmulcld |
|- ( N e. ZZ -> ( 4 x. ( N ^ 2 ) ) e. ZZ ) |
| 32 |
31
|
zcnd |
|- ( N e. ZZ -> ( 4 x. ( N ^ 2 ) ) e. CC ) |
| 33 |
29 4
|
zmulcld |
|- ( N e. ZZ -> ( 4 x. N ) e. ZZ ) |
| 34 |
33
|
zcnd |
|- ( N e. ZZ -> ( 4 x. N ) e. CC ) |
| 35 |
32 34
|
addcld |
|- ( N e. ZZ -> ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) e. CC ) |
| 36 |
|
pncan1 |
|- ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) e. CC -> ( ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 37 |
35 36
|
syl |
|- ( N e. ZZ -> ( ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 38 |
27 37
|
eqtrd |
|- ( N e. ZZ -> ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 39 |
38
|
adantr |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 40 |
10 39
|
eqtrd |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( M ^ 2 ) - 1 ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 41 |
40
|
oveq1d |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( M ^ 2 ) - 1 ) / 8 ) = ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) / 8 ) ) |
| 42 |
|
4cn |
|- 4 e. CC |
| 43 |
42
|
a1i |
|- ( N e. ZZ -> 4 e. CC ) |
| 44 |
30
|
zcnd |
|- ( N e. ZZ -> ( N ^ 2 ) e. CC ) |
| 45 |
43 44 12
|
adddid |
|- ( N e. ZZ -> ( 4 x. ( ( N ^ 2 ) + N ) ) = ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) ) |
| 46 |
45
|
eqcomd |
|- ( N e. ZZ -> ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) = ( 4 x. ( ( N ^ 2 ) + N ) ) ) |
| 47 |
46
|
oveq1d |
|- ( N e. ZZ -> ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) / 8 ) = ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) ) |
| 48 |
47
|
adantr |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( 4 x. ( N ^ 2 ) ) + ( 4 x. N ) ) / 8 ) = ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) ) |
| 49 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 50 |
49
|
a1i |
|- ( N e. ZZ -> ( 4 x. 2 ) = 8 ) |
| 51 |
50
|
eqcomd |
|- ( N e. ZZ -> 8 = ( 4 x. 2 ) ) |
| 52 |
51
|
oveq2d |
|- ( N e. ZZ -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) = ( ( 4 x. ( ( N ^ 2 ) + N ) ) / ( 4 x. 2 ) ) ) |
| 53 |
30 4
|
zaddcld |
|- ( N e. ZZ -> ( ( N ^ 2 ) + N ) e. ZZ ) |
| 54 |
53
|
zcnd |
|- ( N e. ZZ -> ( ( N ^ 2 ) + N ) e. CC ) |
| 55 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 56 |
55
|
a1i |
|- ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 57 |
|
4ne0 |
|- 4 =/= 0 |
| 58 |
42 57
|
pm3.2i |
|- ( 4 e. CC /\ 4 =/= 0 ) |
| 59 |
58
|
a1i |
|- ( N e. ZZ -> ( 4 e. CC /\ 4 =/= 0 ) ) |
| 60 |
|
divcan5 |
|- ( ( ( ( N ^ 2 ) + N ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / ( 4 x. 2 ) ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 61 |
54 56 59 60
|
syl3anc |
|- ( N e. ZZ -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / ( 4 x. 2 ) ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 62 |
12
|
sqvald |
|- ( N e. ZZ -> ( N ^ 2 ) = ( N x. N ) ) |
| 63 |
62
|
oveq1d |
|- ( N e. ZZ -> ( ( N ^ 2 ) + N ) = ( ( N x. N ) + N ) ) |
| 64 |
12
|
mulridd |
|- ( N e. ZZ -> ( N x. 1 ) = N ) |
| 65 |
64
|
eqcomd |
|- ( N e. ZZ -> N = ( N x. 1 ) ) |
| 66 |
65
|
oveq2d |
|- ( N e. ZZ -> ( ( N x. N ) + N ) = ( ( N x. N ) + ( N x. 1 ) ) ) |
| 67 |
|
1cnd |
|- ( N e. ZZ -> 1 e. CC ) |
| 68 |
|
adddi |
|- ( ( N e. CC /\ N e. CC /\ 1 e. CC ) -> ( N x. ( N + 1 ) ) = ( ( N x. N ) + ( N x. 1 ) ) ) |
| 69 |
68
|
eqcomd |
|- ( ( N e. CC /\ N e. CC /\ 1 e. CC ) -> ( ( N x. N ) + ( N x. 1 ) ) = ( N x. ( N + 1 ) ) ) |
| 70 |
12 12 67 69
|
syl3anc |
|- ( N e. ZZ -> ( ( N x. N ) + ( N x. 1 ) ) = ( N x. ( N + 1 ) ) ) |
| 71 |
63 66 70
|
3eqtrd |
|- ( N e. ZZ -> ( ( N ^ 2 ) + N ) = ( N x. ( N + 1 ) ) ) |
| 72 |
71
|
oveq1d |
|- ( N e. ZZ -> ( ( ( N ^ 2 ) + N ) / 2 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |
| 73 |
52 61 72
|
3eqtrd |
|- ( N e. ZZ -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |
| 74 |
73
|
adantr |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( 4 x. ( ( N ^ 2 ) + N ) ) / 8 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |
| 75 |
41 48 74
|
3eqtrd |
|- ( ( N e. ZZ /\ M = ( ( 2 x. N ) + 1 ) ) -> ( ( ( M ^ 2 ) - 1 ) / 8 ) = ( ( N x. ( N + 1 ) ) / 2 ) ) |