| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgpcomp.s |
|- S = ( Base ` R ) |
| 2 |
|
srgpcomp.m |
|- .X. = ( .r ` R ) |
| 3 |
|
srgpcomp.g |
|- G = ( mulGrp ` R ) |
| 4 |
|
srgpcomp.e |
|- .^ = ( .g ` G ) |
| 5 |
|
srgpcomp.r |
|- ( ph -> R e. SRing ) |
| 6 |
|
srgpcomp.a |
|- ( ph -> A e. S ) |
| 7 |
|
srgpcomp.b |
|- ( ph -> B e. S ) |
| 8 |
|
srgpcomp.k |
|- ( ph -> K e. NN0 ) |
| 9 |
|
srgpcomp.c |
|- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
| 10 |
|
oveq1 |
|- ( x = 0 -> ( x .^ B ) = ( 0 .^ B ) ) |
| 11 |
10
|
oveq1d |
|- ( x = 0 -> ( ( x .^ B ) .X. A ) = ( ( 0 .^ B ) .X. A ) ) |
| 12 |
10
|
oveq2d |
|- ( x = 0 -> ( A .X. ( x .^ B ) ) = ( A .X. ( 0 .^ B ) ) ) |
| 13 |
11 12
|
eqeq12d |
|- ( x = 0 -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) ) |
| 14 |
13
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) ) ) |
| 15 |
|
oveq1 |
|- ( x = y -> ( x .^ B ) = ( y .^ B ) ) |
| 16 |
15
|
oveq1d |
|- ( x = y -> ( ( x .^ B ) .X. A ) = ( ( y .^ B ) .X. A ) ) |
| 17 |
15
|
oveq2d |
|- ( x = y -> ( A .X. ( x .^ B ) ) = ( A .X. ( y .^ B ) ) ) |
| 18 |
16 17
|
eqeq12d |
|- ( x = y -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) ) |
| 19 |
18
|
imbi2d |
|- ( x = y -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) ) ) |
| 20 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ B ) = ( ( y + 1 ) .^ B ) ) |
| 21 |
20
|
oveq1d |
|- ( x = ( y + 1 ) -> ( ( x .^ B ) .X. A ) = ( ( ( y + 1 ) .^ B ) .X. A ) ) |
| 22 |
20
|
oveq2d |
|- ( x = ( y + 1 ) -> ( A .X. ( x .^ B ) ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 23 |
21 22
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) |
| 24 |
23
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
| 25 |
|
oveq1 |
|- ( x = K -> ( x .^ B ) = ( K .^ B ) ) |
| 26 |
25
|
oveq1d |
|- ( x = K -> ( ( x .^ B ) .X. A ) = ( ( K .^ B ) .X. A ) ) |
| 27 |
25
|
oveq2d |
|- ( x = K -> ( A .X. ( x .^ B ) ) = ( A .X. ( K .^ B ) ) ) |
| 28 |
26 27
|
eqeq12d |
|- ( x = K -> ( ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) <-> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) |
| 29 |
28
|
imbi2d |
|- ( x = K -> ( ( ph -> ( ( x .^ B ) .X. A ) = ( A .X. ( x .^ B ) ) ) <-> ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) ) |
| 30 |
3 1
|
mgpbas |
|- S = ( Base ` G ) |
| 31 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 32 |
3 31
|
ringidval |
|- ( 1r ` R ) = ( 0g ` G ) |
| 33 |
30 32 4
|
mulg0 |
|- ( B e. S -> ( 0 .^ B ) = ( 1r ` R ) ) |
| 34 |
7 33
|
syl |
|- ( ph -> ( 0 .^ B ) = ( 1r ` R ) ) |
| 35 |
34
|
oveq1d |
|- ( ph -> ( ( 0 .^ B ) .X. A ) = ( ( 1r ` R ) .X. A ) ) |
| 36 |
1 2 31
|
srgridm |
|- ( ( R e. SRing /\ A e. S ) -> ( A .X. ( 1r ` R ) ) = A ) |
| 37 |
5 6 36
|
syl2anc |
|- ( ph -> ( A .X. ( 1r ` R ) ) = A ) |
| 38 |
34
|
oveq2d |
|- ( ph -> ( A .X. ( 0 .^ B ) ) = ( A .X. ( 1r ` R ) ) ) |
| 39 |
1 2 31
|
srglidm |
|- ( ( R e. SRing /\ A e. S ) -> ( ( 1r ` R ) .X. A ) = A ) |
| 40 |
5 6 39
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .X. A ) = A ) |
| 41 |
37 38 40
|
3eqtr4rd |
|- ( ph -> ( ( 1r ` R ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) |
| 42 |
35 41
|
eqtrd |
|- ( ph -> ( ( 0 .^ B ) .X. A ) = ( A .X. ( 0 .^ B ) ) ) |
| 43 |
3
|
srgmgp |
|- ( R e. SRing -> G e. Mnd ) |
| 44 |
5 43
|
syl |
|- ( ph -> G e. Mnd ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> G e. Mnd ) |
| 46 |
|
simpr |
|- ( ( ph /\ y e. NN0 ) -> y e. NN0 ) |
| 47 |
7
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> B e. S ) |
| 48 |
3 2
|
mgpplusg |
|- .X. = ( +g ` G ) |
| 49 |
30 4 48
|
mulgnn0p1 |
|- ( ( G e. Mnd /\ y e. NN0 /\ B e. S ) -> ( ( y + 1 ) .^ B ) = ( ( y .^ B ) .X. B ) ) |
| 50 |
45 46 47 49
|
syl3anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( y + 1 ) .^ B ) = ( ( y .^ B ) .X. B ) ) |
| 51 |
50
|
oveq1d |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. B ) .X. A ) ) |
| 52 |
9
|
eqcomd |
|- ( ph -> ( B .X. A ) = ( A .X. B ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> ( B .X. A ) = ( A .X. B ) ) |
| 54 |
53
|
oveq2d |
|- ( ( ph /\ y e. NN0 ) -> ( ( y .^ B ) .X. ( B .X. A ) ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
| 55 |
5
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> R e. SRing ) |
| 56 |
30 4 45 46 47
|
mulgnn0cld |
|- ( ( ph /\ y e. NN0 ) -> ( y .^ B ) e. S ) |
| 57 |
6
|
adantr |
|- ( ( ph /\ y e. NN0 ) -> A e. S ) |
| 58 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( ( y .^ B ) e. S /\ B e. S /\ A e. S ) ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( y .^ B ) .X. ( B .X. A ) ) ) |
| 59 |
55 56 47 57 58
|
syl13anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( y .^ B ) .X. ( B .X. A ) ) ) |
| 60 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( ( y .^ B ) e. S /\ A e. S /\ B e. S ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
| 61 |
55 56 57 47 60
|
syl13anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( y .^ B ) .X. ( A .X. B ) ) ) |
| 62 |
54 59 61
|
3eqtr4d |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
| 63 |
51 62
|
eqtrd |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( ( ( y .^ B ) .X. A ) .X. B ) ) |
| 65 |
|
oveq1 |
|- ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( ( A .X. ( y .^ B ) ) .X. B ) ) |
| 66 |
1 2
|
srgass |
|- ( ( R e. SRing /\ ( A e. S /\ ( y .^ B ) e. S /\ B e. S ) ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y .^ B ) .X. B ) ) ) |
| 67 |
55 57 56 47 66
|
syl13anc |
|- ( ( ph /\ y e. NN0 ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y .^ B ) .X. B ) ) ) |
| 68 |
50
|
eqcomd |
|- ( ( ph /\ y e. NN0 ) -> ( ( y .^ B ) .X. B ) = ( ( y + 1 ) .^ B ) ) |
| 69 |
68
|
oveq2d |
|- ( ( ph /\ y e. NN0 ) -> ( A .X. ( ( y .^ B ) .X. B ) ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 70 |
67 69
|
eqtrd |
|- ( ( ph /\ y e. NN0 ) -> ( ( A .X. ( y .^ B ) ) .X. B ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 71 |
65 70
|
sylan9eqr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y .^ B ) .X. A ) .X. B ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 72 |
64 71
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) |
| 73 |
72
|
ex |
|- ( ( ph /\ y e. NN0 ) -> ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) |
| 74 |
73
|
expcom |
|- ( y e. NN0 -> ( ph -> ( ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
| 75 |
74
|
a2d |
|- ( y e. NN0 -> ( ( ph -> ( ( y .^ B ) .X. A ) = ( A .X. ( y .^ B ) ) ) -> ( ph -> ( ( ( y + 1 ) .^ B ) .X. A ) = ( A .X. ( ( y + 1 ) .^ B ) ) ) ) ) |
| 76 |
14 19 24 29 42 75
|
nn0ind |
|- ( K e. NN0 -> ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) ) |
| 77 |
8 76
|
mpcom |
|- ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) |