Description: If two triangles have equal sides, one angle in one triangle has the same cosine as the corresponding angle in the other triangle. This is a partial form of the SSS congruence theorem.
This theorem is proven by using lawcos on both triangles to express one side in terms of the other two, and then equating these expressions and reducing this algebraically to get an equality of cosines of angles. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssscongptld.angdef | |- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
|
| ssscongptld.1 | |- ( ph -> A e. CC ) |
||
| ssscongptld.2 | |- ( ph -> B e. CC ) |
||
| ssscongptld.3 | |- ( ph -> C e. CC ) |
||
| ssscongptld.4 | |- ( ph -> D e. CC ) |
||
| ssscongptld.5 | |- ( ph -> E e. CC ) |
||
| ssscongptld.6 | |- ( ph -> G e. CC ) |
||
| ssscongptld.7 | |- ( ph -> A =/= B ) |
||
| ssscongptld.8 | |- ( ph -> B =/= C ) |
||
| ssscongptld.9 | |- ( ph -> D =/= E ) |
||
| ssscongptld.10 | |- ( ph -> E =/= G ) |
||
| ssscongptld.11 | |- ( ph -> ( abs ` ( A - B ) ) = ( abs ` ( D - E ) ) ) |
||
| ssscongptld.12 | |- ( ph -> ( abs ` ( B - C ) ) = ( abs ` ( E - G ) ) ) |
||
| ssscongptld.13 | |- ( ph -> ( abs ` ( C - A ) ) = ( abs ` ( G - D ) ) ) |
||
| Assertion | ssscongptld | |- ( ph -> ( cos ` ( ( A - B ) F ( C - B ) ) ) = ( cos ` ( ( D - E ) F ( G - E ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssscongptld.angdef | |- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
|
| 2 | ssscongptld.1 | |- ( ph -> A e. CC ) |
|
| 3 | ssscongptld.2 | |- ( ph -> B e. CC ) |
|
| 4 | ssscongptld.3 | |- ( ph -> C e. CC ) |
|
| 5 | ssscongptld.4 | |- ( ph -> D e. CC ) |
|
| 6 | ssscongptld.5 | |- ( ph -> E e. CC ) |
|
| 7 | ssscongptld.6 | |- ( ph -> G e. CC ) |
|
| 8 | ssscongptld.7 | |- ( ph -> A =/= B ) |
|
| 9 | ssscongptld.8 | |- ( ph -> B =/= C ) |
|
| 10 | ssscongptld.9 | |- ( ph -> D =/= E ) |
|
| 11 | ssscongptld.10 | |- ( ph -> E =/= G ) |
|
| 12 | ssscongptld.11 | |- ( ph -> ( abs ` ( A - B ) ) = ( abs ` ( D - E ) ) ) |
|
| 13 | ssscongptld.12 | |- ( ph -> ( abs ` ( B - C ) ) = ( abs ` ( E - G ) ) ) |
|
| 14 | ssscongptld.13 | |- ( ph -> ( abs ` ( C - A ) ) = ( abs ` ( G - D ) ) ) |
|
| 15 | negpitopissre | |- ( -u _pi (,] _pi ) C_ RR |
|
| 16 | ax-resscn | |- RR C_ CC |
|
| 17 | 15 16 | sstri | |- ( -u _pi (,] _pi ) C_ CC |
| 18 | 2 3 | subcld | |- ( ph -> ( A - B ) e. CC ) |
| 19 | 2 3 8 | subne0d | |- ( ph -> ( A - B ) =/= 0 ) |
| 20 | 4 3 | subcld | |- ( ph -> ( C - B ) e. CC ) |
| 21 | 9 | necomd | |- ( ph -> C =/= B ) |
| 22 | 4 3 21 | subne0d | |- ( ph -> ( C - B ) =/= 0 ) |
| 23 | 1 18 19 20 22 | angcld | |- ( ph -> ( ( A - B ) F ( C - B ) ) e. ( -u _pi (,] _pi ) ) |
| 24 | 17 23 | sselid | |- ( ph -> ( ( A - B ) F ( C - B ) ) e. CC ) |
| 25 | 24 | coscld | |- ( ph -> ( cos ` ( ( A - B ) F ( C - B ) ) ) e. CC ) |
| 26 | 5 6 | subcld | |- ( ph -> ( D - E ) e. CC ) |
| 27 | 5 6 10 | subne0d | |- ( ph -> ( D - E ) =/= 0 ) |
| 28 | 7 6 | subcld | |- ( ph -> ( G - E ) e. CC ) |
| 29 | 11 | necomd | |- ( ph -> G =/= E ) |
| 30 | 7 6 29 | subne0d | |- ( ph -> ( G - E ) =/= 0 ) |
| 31 | 1 26 27 28 30 | angcld | |- ( ph -> ( ( D - E ) F ( G - E ) ) e. ( -u _pi (,] _pi ) ) |
| 32 | 17 31 | sselid | |- ( ph -> ( ( D - E ) F ( G - E ) ) e. CC ) |
| 33 | 32 | coscld | |- ( ph -> ( cos ` ( ( D - E ) F ( G - E ) ) ) e. CC ) |
| 34 | 26 | abscld | |- ( ph -> ( abs ` ( D - E ) ) e. RR ) |
| 35 | 34 | recnd | |- ( ph -> ( abs ` ( D - E ) ) e. CC ) |
| 36 | 28 | abscld | |- ( ph -> ( abs ` ( G - E ) ) e. RR ) |
| 37 | 36 | recnd | |- ( ph -> ( abs ` ( G - E ) ) e. CC ) |
| 38 | 35 37 | mulcld | |- ( ph -> ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) e. CC ) |
| 39 | 26 27 | absne0d | |- ( ph -> ( abs ` ( D - E ) ) =/= 0 ) |
| 40 | 28 30 | absne0d | |- ( ph -> ( abs ` ( G - E ) ) =/= 0 ) |
| 41 | 35 37 39 40 | mulne0d | |- ( ph -> ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) =/= 0 ) |
| 42 | 4 3 | abssubd | |- ( ph -> ( abs ` ( C - B ) ) = ( abs ` ( B - C ) ) ) |
| 43 | 7 6 | abssubd | |- ( ph -> ( abs ` ( G - E ) ) = ( abs ` ( E - G ) ) ) |
| 44 | 13 42 43 | 3eqtr4d | |- ( ph -> ( abs ` ( C - B ) ) = ( abs ` ( G - E ) ) ) |
| 45 | 12 44 | oveq12d | |- ( ph -> ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) = ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) ) |
| 46 | 45 | oveq1d | |- ( ph -> ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) = ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) |
| 47 | 12 35 | eqeltrd | |- ( ph -> ( abs ` ( A - B ) ) e. CC ) |
| 48 | 44 37 | eqeltrd | |- ( ph -> ( abs ` ( C - B ) ) e. CC ) |
| 49 | 47 48 | mulcld | |- ( ph -> ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) e. CC ) |
| 50 | 49 25 | mulcld | |- ( ph -> ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) e. CC ) |
| 51 | 38 33 | mulcld | |- ( ph -> ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) e. CC ) |
| 52 | 2cnd | |- ( ph -> 2 e. CC ) |
|
| 53 | 2ne0 | |- 2 =/= 0 |
|
| 54 | 53 | a1i | |- ( ph -> 2 =/= 0 ) |
| 55 | 35 | sqcld | |- ( ph -> ( ( abs ` ( D - E ) ) ^ 2 ) e. CC ) |
| 56 | 37 | sqcld | |- ( ph -> ( ( abs ` ( G - E ) ) ^ 2 ) e. CC ) |
| 57 | 55 56 | addcld | |- ( ph -> ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) e. CC ) |
| 58 | 52 50 | mulcld | |- ( ph -> ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) e. CC ) |
| 59 | 52 51 | mulcld | |- ( ph -> ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) e. CC ) |
| 60 | 12 | oveq1d | |- ( ph -> ( ( abs ` ( A - B ) ) ^ 2 ) = ( ( abs ` ( D - E ) ) ^ 2 ) ) |
| 61 | 44 | oveq1d | |- ( ph -> ( ( abs ` ( C - B ) ) ^ 2 ) = ( ( abs ` ( G - E ) ) ^ 2 ) ) |
| 62 | 60 61 | oveq12d | |- ( ph -> ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) = ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) ) |
| 63 | 62 | oveq1d | |- ( ph -> ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) ) |
| 64 | 14 | oveq1d | |- ( ph -> ( ( abs ` ( C - A ) ) ^ 2 ) = ( ( abs ` ( G - D ) ) ^ 2 ) ) |
| 65 | eqid | |- ( abs ` ( A - B ) ) = ( abs ` ( A - B ) ) |
|
| 66 | eqid | |- ( abs ` ( C - B ) ) = ( abs ` ( C - B ) ) |
|
| 67 | eqid | |- ( abs ` ( C - A ) ) = ( abs ` ( C - A ) ) |
|
| 68 | eqid | |- ( ( A - B ) F ( C - B ) ) = ( ( A - B ) F ( C - B ) ) |
|
| 69 | 1 65 66 67 68 | lawcos | |- ( ( ( C e. CC /\ A e. CC /\ B e. CC ) /\ ( C =/= B /\ A =/= B ) ) -> ( ( abs ` ( C - A ) ) ^ 2 ) = ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) ) |
| 70 | 4 2 3 21 8 69 | syl32anc | |- ( ph -> ( ( abs ` ( C - A ) ) ^ 2 ) = ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) ) |
| 71 | eqid | |- ( abs ` ( D - E ) ) = ( abs ` ( D - E ) ) |
|
| 72 | eqid | |- ( abs ` ( G - E ) ) = ( abs ` ( G - E ) ) |
|
| 73 | eqid | |- ( abs ` ( G - D ) ) = ( abs ` ( G - D ) ) |
|
| 74 | eqid | |- ( ( D - E ) F ( G - E ) ) = ( ( D - E ) F ( G - E ) ) |
|
| 75 | 1 71 72 73 74 | lawcos | |- ( ( ( G e. CC /\ D e. CC /\ E e. CC ) /\ ( G =/= E /\ D =/= E ) ) -> ( ( abs ` ( G - D ) ) ^ 2 ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) ) |
| 76 | 7 5 6 29 10 75 | syl32anc | |- ( ph -> ( ( abs ` ( G - D ) ) ^ 2 ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) ) |
| 77 | 64 70 76 | 3eqtr3d | |- ( ph -> ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) ) |
| 78 | 63 77 | eqtr3d | |- ( ph -> ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) ) |
| 79 | 57 58 59 78 | subcand | |- ( ph -> ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) = ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) |
| 80 | 50 51 52 54 79 | mulcanad | |- ( ph -> ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) = ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) |
| 81 | 46 80 | eqtr3d | |- ( ph -> ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) = ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) |
| 82 | 25 33 38 41 81 | mulcanad | |- ( ph -> ( cos ` ( ( A - B ) F ( C - B ) ) ) = ( cos ` ( ( D - E ) F ( G - E ) ) ) ) |