Metamath Proof Explorer


Theorem ssscongptld

Description: If two triangles have equal sides, one angle in one triangle has the same cosine as the corresponding angle in the other triangle. This is a partial form of the SSS congruence theorem.

This theorem is proven by using lawcos on both triangles to express one side in terms of the other two, and then equating these expressions and reducing this algebraically to get an equality of cosines of angles. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ssscongptld.angdef
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) )
ssscongptld.1
|- ( ph -> A e. CC )
ssscongptld.2
|- ( ph -> B e. CC )
ssscongptld.3
|- ( ph -> C e. CC )
ssscongptld.4
|- ( ph -> D e. CC )
ssscongptld.5
|- ( ph -> E e. CC )
ssscongptld.6
|- ( ph -> G e. CC )
ssscongptld.7
|- ( ph -> A =/= B )
ssscongptld.8
|- ( ph -> B =/= C )
ssscongptld.9
|- ( ph -> D =/= E )
ssscongptld.10
|- ( ph -> E =/= G )
ssscongptld.11
|- ( ph -> ( abs ` ( A - B ) ) = ( abs ` ( D - E ) ) )
ssscongptld.12
|- ( ph -> ( abs ` ( B - C ) ) = ( abs ` ( E - G ) ) )
ssscongptld.13
|- ( ph -> ( abs ` ( C - A ) ) = ( abs ` ( G - D ) ) )
Assertion ssscongptld
|- ( ph -> ( cos ` ( ( A - B ) F ( C - B ) ) ) = ( cos ` ( ( D - E ) F ( G - E ) ) ) )

Proof

Step Hyp Ref Expression
1 ssscongptld.angdef
 |-  F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) )
2 ssscongptld.1
 |-  ( ph -> A e. CC )
3 ssscongptld.2
 |-  ( ph -> B e. CC )
4 ssscongptld.3
 |-  ( ph -> C e. CC )
5 ssscongptld.4
 |-  ( ph -> D e. CC )
6 ssscongptld.5
 |-  ( ph -> E e. CC )
7 ssscongptld.6
 |-  ( ph -> G e. CC )
8 ssscongptld.7
 |-  ( ph -> A =/= B )
9 ssscongptld.8
 |-  ( ph -> B =/= C )
10 ssscongptld.9
 |-  ( ph -> D =/= E )
11 ssscongptld.10
 |-  ( ph -> E =/= G )
12 ssscongptld.11
 |-  ( ph -> ( abs ` ( A - B ) ) = ( abs ` ( D - E ) ) )
13 ssscongptld.12
 |-  ( ph -> ( abs ` ( B - C ) ) = ( abs ` ( E - G ) ) )
14 ssscongptld.13
 |-  ( ph -> ( abs ` ( C - A ) ) = ( abs ` ( G - D ) ) )
15 negpitopissre
 |-  ( -u _pi (,] _pi ) C_ RR
16 ax-resscn
 |-  RR C_ CC
17 15 16 sstri
 |-  ( -u _pi (,] _pi ) C_ CC
18 2 3 subcld
 |-  ( ph -> ( A - B ) e. CC )
19 2 3 8 subne0d
 |-  ( ph -> ( A - B ) =/= 0 )
20 4 3 subcld
 |-  ( ph -> ( C - B ) e. CC )
21 9 necomd
 |-  ( ph -> C =/= B )
22 4 3 21 subne0d
 |-  ( ph -> ( C - B ) =/= 0 )
23 1 18 19 20 22 angcld
 |-  ( ph -> ( ( A - B ) F ( C - B ) ) e. ( -u _pi (,] _pi ) )
24 17 23 sseldi
 |-  ( ph -> ( ( A - B ) F ( C - B ) ) e. CC )
25 24 coscld
 |-  ( ph -> ( cos ` ( ( A - B ) F ( C - B ) ) ) e. CC )
26 5 6 subcld
 |-  ( ph -> ( D - E ) e. CC )
27 5 6 10 subne0d
 |-  ( ph -> ( D - E ) =/= 0 )
28 7 6 subcld
 |-  ( ph -> ( G - E ) e. CC )
29 11 necomd
 |-  ( ph -> G =/= E )
30 7 6 29 subne0d
 |-  ( ph -> ( G - E ) =/= 0 )
31 1 26 27 28 30 angcld
 |-  ( ph -> ( ( D - E ) F ( G - E ) ) e. ( -u _pi (,] _pi ) )
32 17 31 sseldi
 |-  ( ph -> ( ( D - E ) F ( G - E ) ) e. CC )
33 32 coscld
 |-  ( ph -> ( cos ` ( ( D - E ) F ( G - E ) ) ) e. CC )
34 26 abscld
 |-  ( ph -> ( abs ` ( D - E ) ) e. RR )
35 34 recnd
 |-  ( ph -> ( abs ` ( D - E ) ) e. CC )
36 28 abscld
 |-  ( ph -> ( abs ` ( G - E ) ) e. RR )
37 36 recnd
 |-  ( ph -> ( abs ` ( G - E ) ) e. CC )
38 35 37 mulcld
 |-  ( ph -> ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) e. CC )
39 26 27 absne0d
 |-  ( ph -> ( abs ` ( D - E ) ) =/= 0 )
40 28 30 absne0d
 |-  ( ph -> ( abs ` ( G - E ) ) =/= 0 )
41 35 37 39 40 mulne0d
 |-  ( ph -> ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) =/= 0 )
42 4 3 abssubd
 |-  ( ph -> ( abs ` ( C - B ) ) = ( abs ` ( B - C ) ) )
43 7 6 abssubd
 |-  ( ph -> ( abs ` ( G - E ) ) = ( abs ` ( E - G ) ) )
44 13 42 43 3eqtr4d
 |-  ( ph -> ( abs ` ( C - B ) ) = ( abs ` ( G - E ) ) )
45 12 44 oveq12d
 |-  ( ph -> ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) = ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) )
46 45 oveq1d
 |-  ( ph -> ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) = ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) )
47 12 35 eqeltrd
 |-  ( ph -> ( abs ` ( A - B ) ) e. CC )
48 44 37 eqeltrd
 |-  ( ph -> ( abs ` ( C - B ) ) e. CC )
49 47 48 mulcld
 |-  ( ph -> ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) e. CC )
50 49 25 mulcld
 |-  ( ph -> ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) e. CC )
51 38 33 mulcld
 |-  ( ph -> ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) e. CC )
52 2cnd
 |-  ( ph -> 2 e. CC )
53 2ne0
 |-  2 =/= 0
54 53 a1i
 |-  ( ph -> 2 =/= 0 )
55 35 sqcld
 |-  ( ph -> ( ( abs ` ( D - E ) ) ^ 2 ) e. CC )
56 37 sqcld
 |-  ( ph -> ( ( abs ` ( G - E ) ) ^ 2 ) e. CC )
57 55 56 addcld
 |-  ( ph -> ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) e. CC )
58 52 50 mulcld
 |-  ( ph -> ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) e. CC )
59 52 51 mulcld
 |-  ( ph -> ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) e. CC )
60 12 oveq1d
 |-  ( ph -> ( ( abs ` ( A - B ) ) ^ 2 ) = ( ( abs ` ( D - E ) ) ^ 2 ) )
61 44 oveq1d
 |-  ( ph -> ( ( abs ` ( C - B ) ) ^ 2 ) = ( ( abs ` ( G - E ) ) ^ 2 ) )
62 60 61 oveq12d
 |-  ( ph -> ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) = ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) )
63 62 oveq1d
 |-  ( ph -> ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) )
64 14 oveq1d
 |-  ( ph -> ( ( abs ` ( C - A ) ) ^ 2 ) = ( ( abs ` ( G - D ) ) ^ 2 ) )
65 eqid
 |-  ( abs ` ( A - B ) ) = ( abs ` ( A - B ) )
66 eqid
 |-  ( abs ` ( C - B ) ) = ( abs ` ( C - B ) )
67 eqid
 |-  ( abs ` ( C - A ) ) = ( abs ` ( C - A ) )
68 eqid
 |-  ( ( A - B ) F ( C - B ) ) = ( ( A - B ) F ( C - B ) )
69 1 65 66 67 68 lawcos
 |-  ( ( ( C e. CC /\ A e. CC /\ B e. CC ) /\ ( C =/= B /\ A =/= B ) ) -> ( ( abs ` ( C - A ) ) ^ 2 ) = ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) )
70 4 2 3 21 8 69 syl32anc
 |-  ( ph -> ( ( abs ` ( C - A ) ) ^ 2 ) = ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) )
71 eqid
 |-  ( abs ` ( D - E ) ) = ( abs ` ( D - E ) )
72 eqid
 |-  ( abs ` ( G - E ) ) = ( abs ` ( G - E ) )
73 eqid
 |-  ( abs ` ( G - D ) ) = ( abs ` ( G - D ) )
74 eqid
 |-  ( ( D - E ) F ( G - E ) ) = ( ( D - E ) F ( G - E ) )
75 1 71 72 73 74 lawcos
 |-  ( ( ( G e. CC /\ D e. CC /\ E e. CC ) /\ ( G =/= E /\ D =/= E ) ) -> ( ( abs ` ( G - D ) ) ^ 2 ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) )
76 7 5 6 29 10 75 syl32anc
 |-  ( ph -> ( ( abs ` ( G - D ) ) ^ 2 ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) )
77 64 70 76 3eqtr3d
 |-  ( ph -> ( ( ( ( abs ` ( A - B ) ) ^ 2 ) + ( ( abs ` ( C - B ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) )
78 63 77 eqtr3d
 |-  ( ph -> ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) ) = ( ( ( ( abs ` ( D - E ) ) ^ 2 ) + ( ( abs ` ( G - E ) ) ^ 2 ) ) - ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) ) )
79 57 58 59 78 subcand
 |-  ( ph -> ( 2 x. ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) ) = ( 2 x. ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) ) )
80 50 51 52 54 79 mulcanad
 |-  ( ph -> ( ( ( abs ` ( A - B ) ) x. ( abs ` ( C - B ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) = ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) )
81 46 80 eqtr3d
 |-  ( ph -> ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( A - B ) F ( C - B ) ) ) ) = ( ( ( abs ` ( D - E ) ) x. ( abs ` ( G - E ) ) ) x. ( cos ` ( ( D - E ) F ( G - E ) ) ) ) )
82 25 33 38 41 81 mulcanad
 |-  ( ph -> ( cos ` ( ( A - B ) F ( C - B ) ) ) = ( cos ` ( ( D - E ) F ( G - E ) ) ) )