Step |
Hyp |
Ref |
Expression |
1 |
|
subsubmgm.h |
|- H = ( G |`s S ) |
2 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
3 |
2
|
submgmss |
|- ( A e. ( SubMgm ` H ) -> A C_ ( Base ` H ) ) |
4 |
3
|
adantl |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A C_ ( Base ` H ) ) |
5 |
1
|
submgmbas |
|- ( S e. ( SubMgm ` G ) -> S = ( Base ` H ) ) |
6 |
5
|
adantr |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> S = ( Base ` H ) ) |
7 |
4 6
|
sseqtrrd |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A C_ S ) |
8 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
9 |
8
|
submgmss |
|- ( S e. ( SubMgm ` G ) -> S C_ ( Base ` G ) ) |
10 |
9
|
adantr |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> S C_ ( Base ` G ) ) |
11 |
7 10
|
sstrd |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A C_ ( Base ` G ) ) |
12 |
1
|
oveq1i |
|- ( H |`s A ) = ( ( G |`s S ) |`s A ) |
13 |
|
ressabs |
|- ( ( S e. ( SubMgm ` G ) /\ A C_ S ) -> ( ( G |`s S ) |`s A ) = ( G |`s A ) ) |
14 |
12 13
|
eqtrid |
|- ( ( S e. ( SubMgm ` G ) /\ A C_ S ) -> ( H |`s A ) = ( G |`s A ) ) |
15 |
7 14
|
syldan |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( H |`s A ) = ( G |`s A ) ) |
16 |
|
eqid |
|- ( H |`s A ) = ( H |`s A ) |
17 |
16
|
submgmmgm |
|- ( A e. ( SubMgm ` H ) -> ( H |`s A ) e. Mgm ) |
18 |
17
|
adantl |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( H |`s A ) e. Mgm ) |
19 |
15 18
|
eqeltrrd |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( G |`s A ) e. Mgm ) |
20 |
|
submgmrcl |
|- ( S e. ( SubMgm ` G ) -> G e. Mgm ) |
21 |
20
|
adantr |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> G e. Mgm ) |
22 |
|
eqid |
|- ( G |`s A ) = ( G |`s A ) |
23 |
8 22
|
issubmgm2 |
|- ( G e. Mgm -> ( A e. ( SubMgm ` G ) <-> ( A C_ ( Base ` G ) /\ ( G |`s A ) e. Mgm ) ) ) |
24 |
21 23
|
syl |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( A e. ( SubMgm ` G ) <-> ( A C_ ( Base ` G ) /\ ( G |`s A ) e. Mgm ) ) ) |
25 |
11 19 24
|
mpbir2and |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> A e. ( SubMgm ` G ) ) |
26 |
25 7
|
jca |
|- ( ( S e. ( SubMgm ` G ) /\ A e. ( SubMgm ` H ) ) -> ( A e. ( SubMgm ` G ) /\ A C_ S ) ) |
27 |
|
simprr |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> A C_ S ) |
28 |
5
|
adantr |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> S = ( Base ` H ) ) |
29 |
27 28
|
sseqtrd |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> A C_ ( Base ` H ) ) |
30 |
14
|
adantrl |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( H |`s A ) = ( G |`s A ) ) |
31 |
22
|
submgmmgm |
|- ( A e. ( SubMgm ` G ) -> ( G |`s A ) e. Mgm ) |
32 |
31
|
ad2antrl |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( G |`s A ) e. Mgm ) |
33 |
30 32
|
eqeltrd |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( H |`s A ) e. Mgm ) |
34 |
1
|
submgmmgm |
|- ( S e. ( SubMgm ` G ) -> H e. Mgm ) |
35 |
34
|
adantr |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> H e. Mgm ) |
36 |
2 16
|
issubmgm2 |
|- ( H e. Mgm -> ( A e. ( SubMgm ` H ) <-> ( A C_ ( Base ` H ) /\ ( H |`s A ) e. Mgm ) ) ) |
37 |
35 36
|
syl |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> ( A e. ( SubMgm ` H ) <-> ( A C_ ( Base ` H ) /\ ( H |`s A ) e. Mgm ) ) ) |
38 |
29 33 37
|
mpbir2and |
|- ( ( S e. ( SubMgm ` G ) /\ ( A e. ( SubMgm ` G ) /\ A C_ S ) ) -> A e. ( SubMgm ` H ) ) |
39 |
26 38
|
impbida |
|- ( S e. ( SubMgm ` G ) -> ( A e. ( SubMgm ` H ) <-> ( A e. ( SubMgm ` G ) /\ A C_ S ) ) ) |