| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdval2 |  |-  ( ( S e. Word A /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S substr <. M , N >. ) = ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) | 
						
							| 2 | 1 | 3expb |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. M , N >. ) = ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) | 
						
							| 3 |  | wrdf |  |-  ( S e. Word A -> S : ( 0 ..^ ( # ` S ) ) --> A ) | 
						
							| 4 | 3 | ffund |  |-  ( S e. Word A -> Fun S ) | 
						
							| 5 | 4 | adantr |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> Fun S ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> Fun S ) | 
						
							| 7 |  | wrddm |  |-  ( S e. Word A -> dom S = ( 0 ..^ ( # ` S ) ) ) | 
						
							| 8 |  | elfzodifsumelfzo |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) -> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( dom S = ( 0 ..^ ( # ` S ) ) /\ ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) ) -> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) | 
						
							| 11 |  | eleq2 |  |-  ( dom S = ( 0 ..^ ( # ` S ) ) -> ( ( x + M ) e. dom S <-> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( dom S = ( 0 ..^ ( # ` S ) ) /\ ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) ) -> ( ( x + M ) e. dom S <-> ( x + M ) e. ( 0 ..^ ( # ` S ) ) ) ) | 
						
							| 13 | 10 12 | mpbird |  |-  ( ( dom S = ( 0 ..^ ( # ` S ) ) /\ ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) ) -> ( x + M ) e. dom S ) | 
						
							| 14 | 13 | exp32 |  |-  ( dom S = ( 0 ..^ ( # ` S ) ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) -> ( x + M ) e. dom S ) ) ) | 
						
							| 15 | 7 14 | syl |  |-  ( S e. Word A -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) -> ( x + M ) e. dom S ) ) ) | 
						
							| 16 | 15 | imp31 |  |-  ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( x + M ) e. dom S ) | 
						
							| 17 |  | simpr |  |-  ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> x e. ( 0 ..^ ( N - M ) ) ) | 
						
							| 18 |  | elfzelz |  |-  ( N e. ( 0 ... ( # ` S ) ) -> N e. ZZ ) | 
						
							| 19 | 18 | adantl |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> N e. ZZ ) | 
						
							| 20 | 19 | adantl |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> N e. ZZ ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> N e. ZZ ) | 
						
							| 22 |  | elfzelz |  |-  ( M e. ( 0 ... N ) -> M e. ZZ ) | 
						
							| 23 | 22 | ad2antrl |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> M e. ZZ ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> M e. ZZ ) | 
						
							| 25 |  | fzoaddel2 |  |-  ( ( x e. ( 0 ..^ ( N - M ) ) /\ N e. ZZ /\ M e. ZZ ) -> ( x + M ) e. ( M ..^ N ) ) | 
						
							| 26 | 17 21 24 25 | syl3anc |  |-  ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( x + M ) e. ( M ..^ N ) ) | 
						
							| 27 |  | funfvima |  |-  ( ( Fun S /\ ( x + M ) e. dom S ) -> ( ( x + M ) e. ( M ..^ N ) -> ( S ` ( x + M ) ) e. ( S " ( M ..^ N ) ) ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( ( Fun S /\ ( x + M ) e. dom S ) /\ ( x + M ) e. ( M ..^ N ) ) -> ( S ` ( x + M ) ) e. ( S " ( M ..^ N ) ) ) | 
						
							| 29 | 6 16 26 28 | syl21anc |  |-  ( ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( N - M ) ) ) -> ( S ` ( x + M ) ) e. ( S " ( M ..^ N ) ) ) | 
						
							| 30 | 29 | fmpttd |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( N - M ) ) --> ( S " ( M ..^ N ) ) ) | 
						
							| 31 |  | fvex |  |-  ( S ` ( x + M ) ) e. _V | 
						
							| 32 |  | eqid |  |-  ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) = ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) | 
						
							| 33 | 31 32 | fnmpti |  |-  ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) Fn ( 0 ..^ ( N - M ) ) | 
						
							| 34 |  | hashfn |  |-  ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) Fn ( 0 ..^ ( N - M ) ) -> ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) = ( # ` ( 0 ..^ ( N - M ) ) ) ) | 
						
							| 35 | 33 34 | mp1i |  |-  ( M e. ( 0 ... N ) -> ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) = ( # ` ( 0 ..^ ( N - M ) ) ) ) | 
						
							| 36 |  | fznn0sub |  |-  ( M e. ( 0 ... N ) -> ( N - M ) e. NN0 ) | 
						
							| 37 |  | hashfzo0 |  |-  ( ( N - M ) e. NN0 -> ( # ` ( 0 ..^ ( N - M ) ) ) = ( N - M ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( M e. ( 0 ... N ) -> ( # ` ( 0 ..^ ( N - M ) ) ) = ( N - M ) ) | 
						
							| 39 | 35 38 | eqtrd |  |-  ( M e. ( 0 ... N ) -> ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) = ( N - M ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( M e. ( 0 ... N ) -> ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) = ( 0 ..^ ( N - M ) ) ) | 
						
							| 41 | 40 | feq2d |  |-  ( M e. ( 0 ... N ) -> ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) <-> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( N - M ) ) --> ( S " ( M ..^ N ) ) ) ) | 
						
							| 42 | 41 | ad2antrl |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) <-> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( N - M ) ) --> ( S " ( M ..^ N ) ) ) ) | 
						
							| 43 | 30 42 | mpbird |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) ) | 
						
							| 44 |  | iswrdb |  |-  ( ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) e. Word ( S " ( M ..^ N ) ) <-> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) : ( 0 ..^ ( # ` ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) ) ) --> ( S " ( M ..^ N ) ) ) | 
						
							| 45 | 43 44 | sylibr |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( N - M ) ) |-> ( S ` ( x + M ) ) ) e. Word ( S " ( M ..^ N ) ) ) | 
						
							| 46 | 2 45 | eqeltrd |  |-  ( ( S e. Word A /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) | 
						
							| 47 | 46 | expcom |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S e. Word A -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) ) | 
						
							| 48 |  | swrdnd0 |  |-  ( S e. Word A -> ( -. ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S substr <. M , N >. ) = (/) ) ) | 
						
							| 49 |  | wrd0 |  |-  (/) e. Word ( S " ( M ..^ N ) ) | 
						
							| 50 |  | eleq1 |  |-  ( ( S substr <. M , N >. ) = (/) -> ( ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) <-> (/) e. Word ( S " ( M ..^ N ) ) ) ) | 
						
							| 51 | 49 50 | mpbiri |  |-  ( ( S substr <. M , N >. ) = (/) -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) | 
						
							| 52 | 48 51 | syl6com |  |-  ( -. ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` S ) ) ) -> ( S e. Word A -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) ) | 
						
							| 53 | 47 52 | pm2.61i |  |-  ( S e. Word A -> ( S substr <. M , N >. ) e. Word ( S " ( M ..^ N ) ) ) |