| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
symquadlem.m |
|- M = ( S ` X ) |
| 8 |
|
symquadlem.a |
|- ( ph -> A e. P ) |
| 9 |
|
symquadlem.b |
|- ( ph -> B e. P ) |
| 10 |
|
symquadlem.c |
|- ( ph -> C e. P ) |
| 11 |
|
symquadlem.d |
|- ( ph -> D e. P ) |
| 12 |
|
symquadlem.x |
|- ( ph -> X e. P ) |
| 13 |
|
symquadlem.1 |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
| 14 |
|
symquadlem.2 |
|- ( ph -> B =/= D ) |
| 15 |
|
symquadlem.3 |
|- ( ph -> ( A .- B ) = ( C .- D ) ) |
| 16 |
|
symquadlem.4 |
|- ( ph -> ( B .- C ) = ( D .- A ) ) |
| 17 |
|
symquadlem.5 |
|- ( ph -> ( X e. ( A L C ) \/ A = C ) ) |
| 18 |
|
symquadlem.6 |
|- ( ph -> ( X e. ( B L D ) \/ B = D ) ) |
| 19 |
1 2 3 6 9 8
|
tgbtwntriv2 |
|- ( ph -> A e. ( B I A ) ) |
| 20 |
1 4 3 6 9 8 8 19
|
btwncolg1 |
|- ( ph -> ( A e. ( B L A ) \/ B = A ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ A = C ) -> ( A e. ( B L A ) \/ B = A ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ A = C ) -> A = C ) |
| 23 |
22
|
oveq2d |
|- ( ( ph /\ A = C ) -> ( B L A ) = ( B L C ) ) |
| 24 |
23
|
eleq2d |
|- ( ( ph /\ A = C ) -> ( A e. ( B L A ) <-> A e. ( B L C ) ) ) |
| 25 |
22
|
eqeq2d |
|- ( ( ph /\ A = C ) -> ( B = A <-> B = C ) ) |
| 26 |
24 25
|
orbi12d |
|- ( ( ph /\ A = C ) -> ( ( A e. ( B L A ) \/ B = A ) <-> ( A e. ( B L C ) \/ B = C ) ) ) |
| 27 |
21 26
|
mpbid |
|- ( ( ph /\ A = C ) -> ( A e. ( B L C ) \/ B = C ) ) |
| 28 |
13 27
|
mtand |
|- ( ph -> -. A = C ) |
| 29 |
28
|
neqned |
|- ( ph -> A =/= C ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> A =/= C ) |
| 31 |
30
|
necomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> C =/= A ) |
| 32 |
31
|
neneqd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. C = A ) |
| 33 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> G e. TarskiG ) |
| 34 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> C e. P ) |
| 35 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> A e. P ) |
| 36 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X e. P ) |
| 37 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X e. ( A L C ) \/ A = C ) ) |
| 38 |
1 4 3 33 35 34 36 37
|
colcom |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X e. ( C L A ) \/ C = A ) ) |
| 39 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> B e. P ) |
| 40 |
11
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> D e. P ) |
| 41 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 42 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> x e. P ) |
| 43 |
1 4 3 6 9 11 12 18
|
colrot2 |
|- ( ph -> ( D e. ( X L B ) \/ X = B ) ) |
| 44 |
1 4 3 6 12 9 11 43
|
colcom |
|- ( ph -> ( D e. ( B L X ) \/ B = X ) ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( D e. ( B L X ) \/ B = X ) ) |
| 46 |
|
simpr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> <" B D X "> ( cgrG ` G ) <" D B x "> ) |
| 47 |
16
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( B .- C ) = ( D .- A ) ) |
| 48 |
1 2 3 6 8 9 10 11 15
|
tgcgrcomlr |
|- ( ph -> ( B .- A ) = ( D .- C ) ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( B .- A ) = ( D .- C ) ) |
| 50 |
49
|
eqcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( D .- C ) = ( B .- A ) ) |
| 51 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> B =/= D ) |
| 52 |
1 4 3 33 39 40 36 41 40 39 2 34 42 35 45 46 47 50 51
|
tgfscgr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- C ) = ( x .- A ) ) |
| 53 |
1 4 3 6 9 10 8 13
|
ncolcom |
|- ( ph -> -. ( A e. ( C L B ) \/ C = B ) ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. ( A e. ( C L B ) \/ C = B ) ) |
| 55 |
17
|
orcomd |
|- ( ph -> ( A = C \/ X e. ( A L C ) ) ) |
| 56 |
55
|
ord |
|- ( ph -> ( -. A = C -> X e. ( A L C ) ) ) |
| 57 |
28 56
|
mpd |
|- ( ph -> X e. ( A L C ) ) |
| 58 |
57
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X e. ( A L C ) ) |
| 59 |
28
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. A = C ) |
| 60 |
47
|
eqcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( D .- A ) = ( B .- C ) ) |
| 61 |
1 4 3 33 39 40 36 41 40 39 2 35 42 34 45 46 49 60 51
|
tgfscgr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- A ) = ( x .- C ) ) |
| 62 |
1 2 3 33 36 35 42 34 61
|
tgcgrcomlr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( A .- X ) = ( C .- x ) ) |
| 63 |
1 2 3 33 34 35
|
axtgcgrrflx |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( C .- A ) = ( A .- C ) ) |
| 64 |
1 2 41 33 35 36 34 34 42 35 62 52 63
|
trgcgr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> <" A X C "> ( cgrG ` G ) <" C x A "> ) |
| 65 |
1 4 3 33 35 36 34 41 34 42 35 37 64
|
lnxfr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( C L A ) \/ C = A ) ) |
| 66 |
1 4 3 33 34 35 42 65
|
colcom |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( A L C ) \/ A = C ) ) |
| 67 |
66
|
orcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( A = C \/ x e. ( A L C ) ) ) |
| 68 |
67
|
ord |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( -. A = C -> x e. ( A L C ) ) ) |
| 69 |
59 68
|
mpd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> x e. ( A L C ) ) |
| 70 |
14
|
neneqd |
|- ( ph -> -. B = D ) |
| 71 |
18
|
orcomd |
|- ( ph -> ( B = D \/ X e. ( B L D ) ) ) |
| 72 |
71
|
ord |
|- ( ph -> ( -. B = D -> X e. ( B L D ) ) ) |
| 73 |
70 72
|
mpd |
|- ( ph -> X e. ( B L D ) ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X e. ( B L D ) ) |
| 75 |
70
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. B = D ) |
| 76 |
18
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X e. ( B L D ) \/ B = D ) ) |
| 77 |
1 2 3 41 33 39 40 36 40 39 42 46
|
cgr3swap23 |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> <" B X D "> ( cgrG ` G ) <" D x B "> ) |
| 78 |
1 4 3 33 39 36 40 41 40 42 39 76 77
|
lnxfr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( D L B ) \/ D = B ) ) |
| 79 |
1 4 3 33 40 39 42 78
|
colcom |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( B L D ) \/ B = D ) ) |
| 80 |
79
|
orcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( B = D \/ x e. ( B L D ) ) ) |
| 81 |
80
|
ord |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( -. B = D -> x e. ( B L D ) ) ) |
| 82 |
75 81
|
mpd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> x e. ( B L D ) ) |
| 83 |
1 3 4 33 35 34 39 40 54 58 69 74 82
|
tglineinteq |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X = x ) |
| 84 |
83
|
oveq1d |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- A ) = ( x .- A ) ) |
| 85 |
52 84
|
eqtr4d |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- C ) = ( X .- A ) ) |
| 86 |
1 2 3 4 5 33 7 34 35 36 38 85
|
colmid |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( A = ( M ` C ) \/ C = A ) ) |
| 87 |
86
|
orcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( C = A \/ A = ( M ` C ) ) ) |
| 88 |
87
|
ord |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( -. C = A -> A = ( M ` C ) ) ) |
| 89 |
32 88
|
mpd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> A = ( M ` C ) ) |
| 90 |
1 2 3 6 9 11
|
axtgcgrrflx |
|- ( ph -> ( B .- D ) = ( D .- B ) ) |
| 91 |
1 4 3 6 9 11 12 41 11 9 2 44 90
|
lnext |
|- ( ph -> E. x e. P <" B D X "> ( cgrG ` G ) <" D B x "> ) |
| 92 |
89 91
|
r19.29a |
|- ( ph -> A = ( M ` C ) ) |