Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
symquadlem.m |
|- M = ( S ` X ) |
8 |
|
symquadlem.a |
|- ( ph -> A e. P ) |
9 |
|
symquadlem.b |
|- ( ph -> B e. P ) |
10 |
|
symquadlem.c |
|- ( ph -> C e. P ) |
11 |
|
symquadlem.d |
|- ( ph -> D e. P ) |
12 |
|
symquadlem.x |
|- ( ph -> X e. P ) |
13 |
|
symquadlem.1 |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
14 |
|
symquadlem.2 |
|- ( ph -> B =/= D ) |
15 |
|
symquadlem.3 |
|- ( ph -> ( A .- B ) = ( C .- D ) ) |
16 |
|
symquadlem.4 |
|- ( ph -> ( B .- C ) = ( D .- A ) ) |
17 |
|
symquadlem.5 |
|- ( ph -> ( X e. ( A L C ) \/ A = C ) ) |
18 |
|
symquadlem.6 |
|- ( ph -> ( X e. ( B L D ) \/ B = D ) ) |
19 |
1 2 3 6 9 8
|
tgbtwntriv2 |
|- ( ph -> A e. ( B I A ) ) |
20 |
1 4 3 6 9 8 8 19
|
btwncolg1 |
|- ( ph -> ( A e. ( B L A ) \/ B = A ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ A = C ) -> ( A e. ( B L A ) \/ B = A ) ) |
22 |
|
simpr |
|- ( ( ph /\ A = C ) -> A = C ) |
23 |
22
|
oveq2d |
|- ( ( ph /\ A = C ) -> ( B L A ) = ( B L C ) ) |
24 |
23
|
eleq2d |
|- ( ( ph /\ A = C ) -> ( A e. ( B L A ) <-> A e. ( B L C ) ) ) |
25 |
22
|
eqeq2d |
|- ( ( ph /\ A = C ) -> ( B = A <-> B = C ) ) |
26 |
24 25
|
orbi12d |
|- ( ( ph /\ A = C ) -> ( ( A e. ( B L A ) \/ B = A ) <-> ( A e. ( B L C ) \/ B = C ) ) ) |
27 |
21 26
|
mpbid |
|- ( ( ph /\ A = C ) -> ( A e. ( B L C ) \/ B = C ) ) |
28 |
13 27
|
mtand |
|- ( ph -> -. A = C ) |
29 |
28
|
neqned |
|- ( ph -> A =/= C ) |
30 |
29
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> A =/= C ) |
31 |
30
|
necomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> C =/= A ) |
32 |
31
|
neneqd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. C = A ) |
33 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> G e. TarskiG ) |
34 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> C e. P ) |
35 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> A e. P ) |
36 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X e. P ) |
37 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X e. ( A L C ) \/ A = C ) ) |
38 |
1 4 3 33 35 34 36 37
|
colcom |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X e. ( C L A ) \/ C = A ) ) |
39 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> B e. P ) |
40 |
11
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> D e. P ) |
41 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
42 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> x e. P ) |
43 |
1 4 3 6 9 11 12 18
|
colrot2 |
|- ( ph -> ( D e. ( X L B ) \/ X = B ) ) |
44 |
1 4 3 6 12 9 11 43
|
colcom |
|- ( ph -> ( D e. ( B L X ) \/ B = X ) ) |
45 |
44
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( D e. ( B L X ) \/ B = X ) ) |
46 |
|
simpr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> <" B D X "> ( cgrG ` G ) <" D B x "> ) |
47 |
16
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( B .- C ) = ( D .- A ) ) |
48 |
1 2 3 6 8 9 10 11 15
|
tgcgrcomlr |
|- ( ph -> ( B .- A ) = ( D .- C ) ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( B .- A ) = ( D .- C ) ) |
50 |
49
|
eqcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( D .- C ) = ( B .- A ) ) |
51 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> B =/= D ) |
52 |
1 4 3 33 39 40 36 41 40 39 2 34 42 35 45 46 47 50 51
|
tgfscgr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- C ) = ( x .- A ) ) |
53 |
1 4 3 6 9 10 8 13
|
ncolcom |
|- ( ph -> -. ( A e. ( C L B ) \/ C = B ) ) |
54 |
53
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. ( A e. ( C L B ) \/ C = B ) ) |
55 |
17
|
orcomd |
|- ( ph -> ( A = C \/ X e. ( A L C ) ) ) |
56 |
55
|
ord |
|- ( ph -> ( -. A = C -> X e. ( A L C ) ) ) |
57 |
28 56
|
mpd |
|- ( ph -> X e. ( A L C ) ) |
58 |
57
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X e. ( A L C ) ) |
59 |
28
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. A = C ) |
60 |
47
|
eqcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( D .- A ) = ( B .- C ) ) |
61 |
1 4 3 33 39 40 36 41 40 39 2 35 42 34 45 46 49 60 51
|
tgfscgr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- A ) = ( x .- C ) ) |
62 |
1 2 3 33 36 35 42 34 61
|
tgcgrcomlr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( A .- X ) = ( C .- x ) ) |
63 |
1 2 3 33 34 35
|
axtgcgrrflx |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( C .- A ) = ( A .- C ) ) |
64 |
1 2 41 33 35 36 34 34 42 35 62 52 63
|
trgcgr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> <" A X C "> ( cgrG ` G ) <" C x A "> ) |
65 |
1 4 3 33 35 36 34 41 34 42 35 37 64
|
lnxfr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( C L A ) \/ C = A ) ) |
66 |
1 4 3 33 34 35 42 65
|
colcom |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( A L C ) \/ A = C ) ) |
67 |
66
|
orcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( A = C \/ x e. ( A L C ) ) ) |
68 |
67
|
ord |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( -. A = C -> x e. ( A L C ) ) ) |
69 |
59 68
|
mpd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> x e. ( A L C ) ) |
70 |
14
|
neneqd |
|- ( ph -> -. B = D ) |
71 |
18
|
orcomd |
|- ( ph -> ( B = D \/ X e. ( B L D ) ) ) |
72 |
71
|
ord |
|- ( ph -> ( -. B = D -> X e. ( B L D ) ) ) |
73 |
70 72
|
mpd |
|- ( ph -> X e. ( B L D ) ) |
74 |
73
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X e. ( B L D ) ) |
75 |
70
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> -. B = D ) |
76 |
18
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X e. ( B L D ) \/ B = D ) ) |
77 |
1 2 3 41 33 39 40 36 40 39 42 46
|
cgr3swap23 |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> <" B X D "> ( cgrG ` G ) <" D x B "> ) |
78 |
1 4 3 33 39 36 40 41 40 42 39 76 77
|
lnxfr |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( D L B ) \/ D = B ) ) |
79 |
1 4 3 33 40 39 42 78
|
colcom |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( x e. ( B L D ) \/ B = D ) ) |
80 |
79
|
orcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( B = D \/ x e. ( B L D ) ) ) |
81 |
80
|
ord |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( -. B = D -> x e. ( B L D ) ) ) |
82 |
75 81
|
mpd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> x e. ( B L D ) ) |
83 |
1 3 4 33 35 34 39 40 54 58 69 74 82
|
tglineinteq |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> X = x ) |
84 |
83
|
oveq1d |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- A ) = ( x .- A ) ) |
85 |
52 84
|
eqtr4d |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( X .- C ) = ( X .- A ) ) |
86 |
1 2 3 4 5 33 7 34 35 36 38 85
|
colmid |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( A = ( M ` C ) \/ C = A ) ) |
87 |
86
|
orcomd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( C = A \/ A = ( M ` C ) ) ) |
88 |
87
|
ord |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> ( -. C = A -> A = ( M ` C ) ) ) |
89 |
32 88
|
mpd |
|- ( ( ( ph /\ x e. P ) /\ <" B D X "> ( cgrG ` G ) <" D B x "> ) -> A = ( M ` C ) ) |
90 |
1 2 3 6 9 11
|
axtgcgrrflx |
|- ( ph -> ( B .- D ) = ( D .- B ) ) |
91 |
1 4 3 6 9 11 12 41 11 9 2 44 90
|
lnext |
|- ( ph -> E. x e. P <" B D X "> ( cgrG ` G ) <" D B x "> ) |
92 |
89 91
|
r19.29a |
|- ( ph -> A = ( M ` C ) ) |