| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telgsumfz.b |
|- B = ( Base ` G ) |
| 2 |
|
telgsumfz.g |
|- ( ph -> G e. Abel ) |
| 3 |
|
telgsumfz.m |
|- .- = ( -g ` G ) |
| 4 |
|
telgsumfz.n |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 |
|
telgsumfz.f |
|- ( ph -> A. k e. ( M ... ( N + 1 ) ) A e. B ) |
| 6 |
|
telgsumfz.l |
|- ( k = i -> A = L ) |
| 7 |
|
telgsumfz.c |
|- ( k = ( i + 1 ) -> A = C ) |
| 8 |
|
telgsumfz.d |
|- ( k = M -> A = D ) |
| 9 |
|
telgsumfz.e |
|- ( k = ( N + 1 ) -> A = E ) |
| 10 |
|
simpr |
|- ( ( ph /\ i e. ( M ... N ) ) -> i e. ( M ... N ) ) |
| 11 |
6
|
adantl |
|- ( ( ( ph /\ i e. ( M ... N ) ) /\ k = i ) -> A = L ) |
| 12 |
10 11
|
csbied |
|- ( ( ph /\ i e. ( M ... N ) ) -> [_ i / k ]_ A = L ) |
| 13 |
12
|
eqcomd |
|- ( ( ph /\ i e. ( M ... N ) ) -> L = [_ i / k ]_ A ) |
| 14 |
|
ovexd |
|- ( ( ph /\ i e. ( M ... N ) ) -> ( i + 1 ) e. _V ) |
| 15 |
7
|
adantl |
|- ( ( ( ph /\ i e. ( M ... N ) ) /\ k = ( i + 1 ) ) -> A = C ) |
| 16 |
14 15
|
csbied |
|- ( ( ph /\ i e. ( M ... N ) ) -> [_ ( i + 1 ) / k ]_ A = C ) |
| 17 |
16
|
eqcomd |
|- ( ( ph /\ i e. ( M ... N ) ) -> C = [_ ( i + 1 ) / k ]_ A ) |
| 18 |
13 17
|
oveq12d |
|- ( ( ph /\ i e. ( M ... N ) ) -> ( L .- C ) = ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) |
| 19 |
18
|
mpteq2dva |
|- ( ph -> ( i e. ( M ... N ) |-> ( L .- C ) ) = ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( L .- C ) ) ) = ( G gsum ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) ) |
| 21 |
1 2 3 4 5
|
telgsumfzs |
|- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) = ( [_ M / k ]_ A .- [_ ( N + 1 ) / k ]_ A ) ) |
| 22 |
4
|
elfvexd |
|- ( ph -> M e. _V ) |
| 23 |
8
|
adantl |
|- ( ( ph /\ k = M ) -> A = D ) |
| 24 |
22 23
|
csbied |
|- ( ph -> [_ M / k ]_ A = D ) |
| 25 |
|
ovexd |
|- ( ph -> ( N + 1 ) e. _V ) |
| 26 |
9
|
adantl |
|- ( ( ph /\ k = ( N + 1 ) ) -> A = E ) |
| 27 |
25 26
|
csbied |
|- ( ph -> [_ ( N + 1 ) / k ]_ A = E ) |
| 28 |
24 27
|
oveq12d |
|- ( ph -> ( [_ M / k ]_ A .- [_ ( N + 1 ) / k ]_ A ) = ( D .- E ) ) |
| 29 |
20 21 28
|
3eqtrd |
|- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( L .- C ) ) ) = ( D .- E ) ) |