| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relopabv |  |-  Rel { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } | 
						
							| 2 |  | ancom |  |-  ( ( x e. A /\ y e. A ) <-> ( y e. A /\ x e. A ) ) | 
						
							| 3 |  | eqcom |  |-  ( ( F ` x ) = ( F ` y ) <-> ( F ` y ) = ( F ` x ) ) | 
						
							| 4 | 2 3 | anbi12i |  |-  ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) <-> ( ( y e. A /\ x e. A ) /\ ( F ` y ) = ( F ` x ) ) ) | 
						
							| 5 |  | simpl |  |-  ( ( u = x /\ v = y ) -> u = x ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( u = x /\ v = y ) -> ( F ` u ) = ( F ` x ) ) | 
						
							| 7 |  | simpr |  |-  ( ( u = x /\ v = y ) -> v = y ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( u = x /\ v = y ) -> ( F ` v ) = ( F ` y ) ) | 
						
							| 9 | 6 8 | eqeq12d |  |-  ( ( u = x /\ v = y ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` x ) = ( F ` y ) ) ) | 
						
							| 10 |  | eqid |  |-  { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } | 
						
							| 11 | 9 10 | brab2a |  |-  ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) | 
						
							| 12 |  | simpl |  |-  ( ( u = y /\ v = x ) -> u = y ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( u = y /\ v = x ) -> ( F ` u ) = ( F ` y ) ) | 
						
							| 14 |  | simpr |  |-  ( ( u = y /\ v = x ) -> v = x ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ( u = y /\ v = x ) -> ( F ` v ) = ( F ` x ) ) | 
						
							| 16 | 13 15 | eqeq12d |  |-  ( ( u = y /\ v = x ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` y ) = ( F ` x ) ) ) | 
						
							| 17 | 16 10 | brab2a |  |-  ( y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x <-> ( ( y e. A /\ x e. A ) /\ ( F ` y ) = ( F ` x ) ) ) | 
						
							| 18 | 4 11 17 | 3bitr4i |  |-  ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x ) | 
						
							| 19 | 18 | biimpi |  |-  ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y -> y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x ) | 
						
							| 20 |  | simplll |  |-  ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> x e. A ) | 
						
							| 21 |  | simprlr |  |-  ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> z e. A ) | 
						
							| 22 |  | simplr |  |-  ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( F ` x ) = ( F ` y ) ) | 
						
							| 23 |  | simprr |  |-  ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( F ` y ) = ( F ` z ) ) | 
						
							| 24 | 22 23 | eqtrd |  |-  ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( F ` x ) = ( F ` z ) ) | 
						
							| 25 | 20 21 24 | jca31 |  |-  ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( ( x e. A /\ z e. A ) /\ ( F ` x ) = ( F ` z ) ) ) | 
						
							| 26 |  | simpl |  |-  ( ( u = y /\ v = z ) -> u = y ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ( u = y /\ v = z ) -> ( F ` u ) = ( F ` y ) ) | 
						
							| 28 |  | simpr |  |-  ( ( u = y /\ v = z ) -> v = z ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ( u = y /\ v = z ) -> ( F ` v ) = ( F ` z ) ) | 
						
							| 30 | 27 29 | eqeq12d |  |-  ( ( u = y /\ v = z ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` y ) = ( F ` z ) ) ) | 
						
							| 31 | 30 10 | brab2a |  |-  ( y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z <-> ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) | 
						
							| 32 | 11 31 | anbi12i |  |-  ( ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y /\ y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z ) <-> ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) ) | 
						
							| 33 |  | simpl |  |-  ( ( u = x /\ v = z ) -> u = x ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( u = x /\ v = z ) -> ( F ` u ) = ( F ` x ) ) | 
						
							| 35 |  | simpr |  |-  ( ( u = x /\ v = z ) -> v = z ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ( u = x /\ v = z ) -> ( F ` v ) = ( F ` z ) ) | 
						
							| 37 | 34 36 | eqeq12d |  |-  ( ( u = x /\ v = z ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` x ) = ( F ` z ) ) ) | 
						
							| 38 | 37 10 | brab2a |  |-  ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z <-> ( ( x e. A /\ z e. A ) /\ ( F ` x ) = ( F ` z ) ) ) | 
						
							| 39 | 25 32 38 | 3imtr4i |  |-  ( ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y /\ y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z ) -> x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z ) | 
						
							| 40 |  | eqid |  |-  ( F ` x ) = ( F ` x ) | 
						
							| 41 | 40 | biantru |  |-  ( ( x e. A /\ x e. A ) <-> ( ( x e. A /\ x e. A ) /\ ( F ` x ) = ( F ` x ) ) ) | 
						
							| 42 |  | pm4.24 |  |-  ( x e. A <-> ( x e. A /\ x e. A ) ) | 
						
							| 43 |  | simpl |  |-  ( ( u = x /\ v = x ) -> u = x ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( u = x /\ v = x ) -> ( F ` u ) = ( F ` x ) ) | 
						
							| 45 |  | simpr |  |-  ( ( u = x /\ v = x ) -> v = x ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( u = x /\ v = x ) -> ( F ` v ) = ( F ` x ) ) | 
						
							| 47 | 44 46 | eqeq12d |  |-  ( ( u = x /\ v = x ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` x ) = ( F ` x ) ) ) | 
						
							| 48 | 47 10 | brab2a |  |-  ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x <-> ( ( x e. A /\ x e. A ) /\ ( F ` x ) = ( F ` x ) ) ) | 
						
							| 49 | 41 42 48 | 3bitr4i |  |-  ( x e. A <-> x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x ) | 
						
							| 50 | 1 19 39 49 | iseri |  |-  { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A | 
						
							| 51 | 11 | baib |  |-  ( ( x e. A /\ y e. A ) -> ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) | 
						
							| 52 | 51 | rgen2 |  |-  A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) | 
						
							| 53 |  | id |  |-  ( A e. V -> A e. V ) | 
						
							| 54 |  | simprll |  |-  ( ( A e. V /\ ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) ) -> u e. A ) | 
						
							| 55 |  | simprlr |  |-  ( ( A e. V /\ ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) ) -> v e. A ) | 
						
							| 56 | 53 53 54 55 | opabex2 |  |-  ( A e. V -> { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } e. _V ) | 
						
							| 57 |  | ereq1 |  |-  ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } -> ( r Er A <-> { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A ) ) | 
						
							| 58 |  | simpl |  |-  ( ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } /\ ( x e. A /\ y e. A ) ) -> r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } ) | 
						
							| 59 | 58 | breqd |  |-  ( ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } /\ ( x e. A /\ y e. A ) ) -> ( x r y <-> x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y ) ) | 
						
							| 60 | 59 | bibi1d |  |-  ( ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } /\ ( x e. A /\ y e. A ) ) -> ( ( x r y <-> ( F ` x ) = ( F ` y ) ) <-> ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) ) | 
						
							| 61 | 60 | 2ralbidva |  |-  ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } -> ( A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) <-> A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) ) | 
						
							| 62 | 57 61 | anbi12d |  |-  ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } -> ( ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) <-> ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A /\ A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) ) ) | 
						
							| 63 | 62 | spcegv |  |-  ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } e. _V -> ( ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A /\ A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) -> E. r ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) ) ) | 
						
							| 64 | 56 63 | syl |  |-  ( A e. V -> ( ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A /\ A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) -> E. r ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) ) ) | 
						
							| 65 | 50 52 64 | mp2ani |  |-  ( A e. V -> E. r ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) ) |