| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relopabv |
|- Rel { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } |
| 2 |
|
ancom |
|- ( ( x e. A /\ y e. A ) <-> ( y e. A /\ x e. A ) ) |
| 3 |
|
eqcom |
|- ( ( F ` x ) = ( F ` y ) <-> ( F ` y ) = ( F ` x ) ) |
| 4 |
2 3
|
anbi12i |
|- ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) <-> ( ( y e. A /\ x e. A ) /\ ( F ` y ) = ( F ` x ) ) ) |
| 5 |
|
simpl |
|- ( ( u = x /\ v = y ) -> u = x ) |
| 6 |
5
|
fveq2d |
|- ( ( u = x /\ v = y ) -> ( F ` u ) = ( F ` x ) ) |
| 7 |
|
simpr |
|- ( ( u = x /\ v = y ) -> v = y ) |
| 8 |
7
|
fveq2d |
|- ( ( u = x /\ v = y ) -> ( F ` v ) = ( F ` y ) ) |
| 9 |
6 8
|
eqeq12d |
|- ( ( u = x /\ v = y ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` x ) = ( F ` y ) ) ) |
| 10 |
|
eqid |
|- { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } |
| 11 |
9 10
|
brab2a |
|- ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) |
| 12 |
|
simpl |
|- ( ( u = y /\ v = x ) -> u = y ) |
| 13 |
12
|
fveq2d |
|- ( ( u = y /\ v = x ) -> ( F ` u ) = ( F ` y ) ) |
| 14 |
|
simpr |
|- ( ( u = y /\ v = x ) -> v = x ) |
| 15 |
14
|
fveq2d |
|- ( ( u = y /\ v = x ) -> ( F ` v ) = ( F ` x ) ) |
| 16 |
13 15
|
eqeq12d |
|- ( ( u = y /\ v = x ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` y ) = ( F ` x ) ) ) |
| 17 |
16 10
|
brab2a |
|- ( y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x <-> ( ( y e. A /\ x e. A ) /\ ( F ` y ) = ( F ` x ) ) ) |
| 18 |
4 11 17
|
3bitr4i |
|- ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x ) |
| 19 |
18
|
biimpi |
|- ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y -> y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x ) |
| 20 |
|
simplll |
|- ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> x e. A ) |
| 21 |
|
simprlr |
|- ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> z e. A ) |
| 22 |
|
simplr |
|- ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( F ` x ) = ( F ` y ) ) |
| 23 |
|
simprr |
|- ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( F ` y ) = ( F ` z ) ) |
| 24 |
22 23
|
eqtrd |
|- ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( F ` x ) = ( F ` z ) ) |
| 25 |
20 21 24
|
jca31 |
|- ( ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) -> ( ( x e. A /\ z e. A ) /\ ( F ` x ) = ( F ` z ) ) ) |
| 26 |
|
simpl |
|- ( ( u = y /\ v = z ) -> u = y ) |
| 27 |
26
|
fveq2d |
|- ( ( u = y /\ v = z ) -> ( F ` u ) = ( F ` y ) ) |
| 28 |
|
simpr |
|- ( ( u = y /\ v = z ) -> v = z ) |
| 29 |
28
|
fveq2d |
|- ( ( u = y /\ v = z ) -> ( F ` v ) = ( F ` z ) ) |
| 30 |
27 29
|
eqeq12d |
|- ( ( u = y /\ v = z ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` y ) = ( F ` z ) ) ) |
| 31 |
30 10
|
brab2a |
|- ( y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z <-> ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) |
| 32 |
11 31
|
anbi12i |
|- ( ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y /\ y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z ) <-> ( ( ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) /\ ( ( y e. A /\ z e. A ) /\ ( F ` y ) = ( F ` z ) ) ) ) |
| 33 |
|
simpl |
|- ( ( u = x /\ v = z ) -> u = x ) |
| 34 |
33
|
fveq2d |
|- ( ( u = x /\ v = z ) -> ( F ` u ) = ( F ` x ) ) |
| 35 |
|
simpr |
|- ( ( u = x /\ v = z ) -> v = z ) |
| 36 |
35
|
fveq2d |
|- ( ( u = x /\ v = z ) -> ( F ` v ) = ( F ` z ) ) |
| 37 |
34 36
|
eqeq12d |
|- ( ( u = x /\ v = z ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` x ) = ( F ` z ) ) ) |
| 38 |
37 10
|
brab2a |
|- ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z <-> ( ( x e. A /\ z e. A ) /\ ( F ` x ) = ( F ` z ) ) ) |
| 39 |
25 32 38
|
3imtr4i |
|- ( ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y /\ y { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z ) -> x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } z ) |
| 40 |
|
eqid |
|- ( F ` x ) = ( F ` x ) |
| 41 |
40
|
biantru |
|- ( ( x e. A /\ x e. A ) <-> ( ( x e. A /\ x e. A ) /\ ( F ` x ) = ( F ` x ) ) ) |
| 42 |
|
pm4.24 |
|- ( x e. A <-> ( x e. A /\ x e. A ) ) |
| 43 |
|
simpl |
|- ( ( u = x /\ v = x ) -> u = x ) |
| 44 |
43
|
fveq2d |
|- ( ( u = x /\ v = x ) -> ( F ` u ) = ( F ` x ) ) |
| 45 |
|
simpr |
|- ( ( u = x /\ v = x ) -> v = x ) |
| 46 |
45
|
fveq2d |
|- ( ( u = x /\ v = x ) -> ( F ` v ) = ( F ` x ) ) |
| 47 |
44 46
|
eqeq12d |
|- ( ( u = x /\ v = x ) -> ( ( F ` u ) = ( F ` v ) <-> ( F ` x ) = ( F ` x ) ) ) |
| 48 |
47 10
|
brab2a |
|- ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x <-> ( ( x e. A /\ x e. A ) /\ ( F ` x ) = ( F ` x ) ) ) |
| 49 |
41 42 48
|
3bitr4i |
|- ( x e. A <-> x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } x ) |
| 50 |
1 19 39 49
|
iseri |
|- { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A |
| 51 |
11
|
baib |
|- ( ( x e. A /\ y e. A ) -> ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) |
| 52 |
51
|
rgen2 |
|- A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) |
| 53 |
|
id |
|- ( A e. V -> A e. V ) |
| 54 |
|
simprll |
|- ( ( A e. V /\ ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) ) -> u e. A ) |
| 55 |
|
simprlr |
|- ( ( A e. V /\ ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) ) -> v e. A ) |
| 56 |
53 53 54 55
|
opabex2 |
|- ( A e. V -> { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } e. _V ) |
| 57 |
|
ereq1 |
|- ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } -> ( r Er A <-> { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A ) ) |
| 58 |
|
simpl |
|- ( ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } /\ ( x e. A /\ y e. A ) ) -> r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } ) |
| 59 |
58
|
breqd |
|- ( ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } /\ ( x e. A /\ y e. A ) ) -> ( x r y <-> x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y ) ) |
| 60 |
59
|
bibi1d |
|- ( ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } /\ ( x e. A /\ y e. A ) ) -> ( ( x r y <-> ( F ` x ) = ( F ` y ) ) <-> ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) ) |
| 61 |
60
|
2ralbidva |
|- ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } -> ( A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) <-> A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) ) |
| 62 |
57 61
|
anbi12d |
|- ( r = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } -> ( ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) <-> ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A /\ A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) ) ) |
| 63 |
62
|
spcegv |
|- ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } e. _V -> ( ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A /\ A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) -> E. r ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) ) ) |
| 64 |
56 63
|
syl |
|- ( A e. V -> ( ( { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } Er A /\ A. x e. A A. y e. A ( x { <. u , v >. | ( ( u e. A /\ v e. A ) /\ ( F ` u ) = ( F ` v ) ) } y <-> ( F ` x ) = ( F ` y ) ) ) -> E. r ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) ) ) |
| 65 |
50 52 64
|
mp2ani |
|- ( A e. V -> E. r ( r Er A /\ A. x e. A A. y e. A ( x r y <-> ( F ` x ) = ( F ` y ) ) ) ) |