| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relopabv |
|
| 2 |
|
ancom |
|
| 3 |
|
eqcom |
|
| 4 |
2 3
|
anbi12i |
|
| 5 |
|
simpl |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
simpr |
|
| 8 |
7
|
fveq2d |
|
| 9 |
6 8
|
eqeq12d |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
brab2a |
|
| 12 |
|
simpl |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
simpr |
|
| 15 |
14
|
fveq2d |
|
| 16 |
13 15
|
eqeq12d |
|
| 17 |
16 10
|
brab2a |
|
| 18 |
4 11 17
|
3bitr4i |
|
| 19 |
18
|
biimpi |
|
| 20 |
|
simplll |
|
| 21 |
|
simprlr |
|
| 22 |
|
simplr |
|
| 23 |
|
simprr |
|
| 24 |
22 23
|
eqtrd |
|
| 25 |
20 21 24
|
jca31 |
|
| 26 |
|
simpl |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
simpr |
|
| 29 |
28
|
fveq2d |
|
| 30 |
27 29
|
eqeq12d |
|
| 31 |
30 10
|
brab2a |
|
| 32 |
11 31
|
anbi12i |
|
| 33 |
|
simpl |
|
| 34 |
33
|
fveq2d |
|
| 35 |
|
simpr |
|
| 36 |
35
|
fveq2d |
|
| 37 |
34 36
|
eqeq12d |
|
| 38 |
37 10
|
brab2a |
|
| 39 |
25 32 38
|
3imtr4i |
|
| 40 |
|
eqid |
|
| 41 |
40
|
biantru |
|
| 42 |
|
pm4.24 |
|
| 43 |
|
simpl |
|
| 44 |
43
|
fveq2d |
|
| 45 |
|
simpr |
|
| 46 |
45
|
fveq2d |
|
| 47 |
44 46
|
eqeq12d |
|
| 48 |
47 10
|
brab2a |
|
| 49 |
41 42 48
|
3bitr4i |
|
| 50 |
1 19 39 49
|
iseri |
|
| 51 |
11
|
baib |
|
| 52 |
51
|
rgen2 |
|
| 53 |
|
id |
|
| 54 |
|
simprll |
|
| 55 |
|
simprlr |
|
| 56 |
53 53 54 55
|
opabex2 |
|
| 57 |
|
ereq1 |
|
| 58 |
|
simpl |
|
| 59 |
58
|
breqd |
|
| 60 |
59
|
bibi1d |
|
| 61 |
60
|
2ralbidva |
|
| 62 |
57 61
|
anbi12d |
|
| 63 |
62
|
spcegv |
|
| 64 |
56 63
|
syl |
|
| 65 |
50 52 64
|
mp2ani |
|