Metamath Proof Explorer


Theorem tgjustf

Description: Given any function F , equality of the image by F is an equivalence relation. (Contributed by Thierry Arnoux, 25-Jan-2023)

Ref Expression
Assertion tgjustf A V r r Er A x A y A x r y F x = F y

Proof

Step Hyp Ref Expression
1 relopabv Rel u v | u A v A F u = F v
2 ancom x A y A y A x A
3 eqcom F x = F y F y = F x
4 2 3 anbi12i x A y A F x = F y y A x A F y = F x
5 simpl u = x v = y u = x
6 5 fveq2d u = x v = y F u = F x
7 simpr u = x v = y v = y
8 7 fveq2d u = x v = y F v = F y
9 6 8 eqeq12d u = x v = y F u = F v F x = F y
10 eqid u v | u A v A F u = F v = u v | u A v A F u = F v
11 9 10 brab2a x u v | u A v A F u = F v y x A y A F x = F y
12 simpl u = y v = x u = y
13 12 fveq2d u = y v = x F u = F y
14 simpr u = y v = x v = x
15 14 fveq2d u = y v = x F v = F x
16 13 15 eqeq12d u = y v = x F u = F v F y = F x
17 16 10 brab2a y u v | u A v A F u = F v x y A x A F y = F x
18 4 11 17 3bitr4i x u v | u A v A F u = F v y y u v | u A v A F u = F v x
19 18 biimpi x u v | u A v A F u = F v y y u v | u A v A F u = F v x
20 simplll x A y A F x = F y y A z A F y = F z x A
21 simprlr x A y A F x = F y y A z A F y = F z z A
22 simplr x A y A F x = F y y A z A F y = F z F x = F y
23 simprr x A y A F x = F y y A z A F y = F z F y = F z
24 22 23 eqtrd x A y A F x = F y y A z A F y = F z F x = F z
25 20 21 24 jca31 x A y A F x = F y y A z A F y = F z x A z A F x = F z
26 simpl u = y v = z u = y
27 26 fveq2d u = y v = z F u = F y
28 simpr u = y v = z v = z
29 28 fveq2d u = y v = z F v = F z
30 27 29 eqeq12d u = y v = z F u = F v F y = F z
31 30 10 brab2a y u v | u A v A F u = F v z y A z A F y = F z
32 11 31 anbi12i x u v | u A v A F u = F v y y u v | u A v A F u = F v z x A y A F x = F y y A z A F y = F z
33 simpl u = x v = z u = x
34 33 fveq2d u = x v = z F u = F x
35 simpr u = x v = z v = z
36 35 fveq2d u = x v = z F v = F z
37 34 36 eqeq12d u = x v = z F u = F v F x = F z
38 37 10 brab2a x u v | u A v A F u = F v z x A z A F x = F z
39 25 32 38 3imtr4i x u v | u A v A F u = F v y y u v | u A v A F u = F v z x u v | u A v A F u = F v z
40 eqid F x = F x
41 40 biantru x A x A x A x A F x = F x
42 pm4.24 x A x A x A
43 simpl u = x v = x u = x
44 43 fveq2d u = x v = x F u = F x
45 simpr u = x v = x v = x
46 45 fveq2d u = x v = x F v = F x
47 44 46 eqeq12d u = x v = x F u = F v F x = F x
48 47 10 brab2a x u v | u A v A F u = F v x x A x A F x = F x
49 41 42 48 3bitr4i x A x u v | u A v A F u = F v x
50 1 19 39 49 iseri u v | u A v A F u = F v Er A
51 11 baib x A y A x u v | u A v A F u = F v y F x = F y
52 51 rgen2 x A y A x u v | u A v A F u = F v y F x = F y
53 id A V A V
54 simprll A V u A v A F u = F v u A
55 simprlr A V u A v A F u = F v v A
56 53 53 54 55 opabex2 A V u v | u A v A F u = F v V
57 ereq1 r = u v | u A v A F u = F v r Er A u v | u A v A F u = F v Er A
58 simpl r = u v | u A v A F u = F v x A y A r = u v | u A v A F u = F v
59 58 breqd r = u v | u A v A F u = F v x A y A x r y x u v | u A v A F u = F v y
60 59 bibi1d r = u v | u A v A F u = F v x A y A x r y F x = F y x u v | u A v A F u = F v y F x = F y
61 60 2ralbidva r = u v | u A v A F u = F v x A y A x r y F x = F y x A y A x u v | u A v A F u = F v y F x = F y
62 57 61 anbi12d r = u v | u A v A F u = F v r Er A x A y A x r y F x = F y u v | u A v A F u = F v Er A x A y A x u v | u A v A F u = F v y F x = F y
63 62 spcegv u v | u A v A F u = F v V u v | u A v A F u = F v Er A x A y A x u v | u A v A F u = F v y F x = F y r r Er A x A y A x r y F x = F y
64 56 63 syl A V u v | u A v A F u = F v Er A x A y A x u v | u A v A F u = F v y F x = F y r r Er A x A y A x r y F x = F y
65 50 52 64 mp2ani A V r r Er A x A y A x r y F x = F y