| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relopabv | ⊢ Rel  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } | 
						
							| 2 |  | ancom | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 3 |  | eqcom | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 4 | 2 3 | anbi12i | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑦 )  →  𝑢  =  𝑥 ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑦 )  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑦 )  →  𝑣  =  𝑦 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑦 )  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 9 | 6 8 | eqeq12d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑦 )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 10 |  | eqid | ⊢ { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } | 
						
							| 11 | 9 10 | brab2a | ⊢ ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑥 )  →  𝑢  =  𝑦 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑥 )  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑥 )  →  𝑣  =  𝑥 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑥 )  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 16 | 13 15 | eqeq12d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑥 )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 17 | 16 10 | brab2a | ⊢ ( 𝑦 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑥  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 18 | 4 11 17 | 3bitr4i | ⊢ ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  𝑦 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ) | 
						
							| 19 | 18 | biimpi | ⊢ ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  →  𝑦 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ) | 
						
							| 20 |  | simplll | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 21 |  | simprlr | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 22 |  | simplr | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 24 | 22 23 | eqtrd | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 25 | 20 21 24 | jca31 | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  𝑢  =  𝑦 ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  𝑣  =  𝑧 ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 30 | 27 29 | eqeq12d | ⊢ ( ( 𝑢  =  𝑦  ∧  𝑣  =  𝑧 )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 31 | 30 10 | brab2a | ⊢ ( 𝑦 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑧  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 32 | 11 31 | anbi12i | ⊢ ( ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ∧  𝑦 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑧 )  ↔  ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ∧  ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑧 )  →  𝑢  =  𝑥 ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑧 )  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑧 )  →  𝑣  =  𝑧 ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑧 )  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 37 | 34 36 | eqeq12d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑧 )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 38 | 37 10 | brab2a | ⊢ ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑧  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 39 | 25 32 38 | 3imtr4i | ⊢ ( ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ∧  𝑦 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑧 )  →  𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑧 ) | 
						
							| 40 |  | eqid | ⊢ ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) | 
						
							| 41 | 40 | biantru | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 42 |  | pm4.24 | ⊢ ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 43 |  | simpl | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑥 )  →  𝑢  =  𝑥 ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑥 )  →  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 45 |  | simpr | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑥 )  →  𝑣  =  𝑥 ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑥 )  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 47 | 44 46 | eqeq12d | ⊢ ( ( 𝑢  =  𝑥  ∧  𝑣  =  𝑥 )  →  ( ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 48 | 47 10 | brab2a | ⊢ ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑥  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 49 | 41 42 48 | 3bitr4i | ⊢ ( 𝑥  ∈  𝐴  ↔  𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ) | 
						
							| 50 | 1 19 39 49 | iseri | ⊢ { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  Er  𝐴 | 
						
							| 51 | 11 | baib | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 52 | 51 | rgen2 | ⊢ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 53 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 54 |  | simprll | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) )  →  𝑢  ∈  𝐴 ) | 
						
							| 55 |  | simprlr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) )  →  𝑣  ∈  𝐴 ) | 
						
							| 56 | 53 53 54 55 | opabex2 | ⊢ ( 𝐴  ∈  𝑉  →  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  ∈  V ) | 
						
							| 57 |  | ereq1 | ⊢ ( 𝑟  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  →  ( 𝑟  Er  𝐴  ↔  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  Er  𝐴 ) ) | 
						
							| 58 |  | simpl | ⊢ ( ( 𝑟  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  𝑟  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } ) | 
						
							| 59 | 58 | breqd | ⊢ ( ( 𝑟  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥 𝑟 𝑦  ↔  𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ) ) | 
						
							| 60 | 59 | bibi1d | ⊢ ( ( 𝑟  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( 𝑥 𝑟 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 61 | 60 | 2ralbidva | ⊢ ( 𝑟  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑟 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 62 | 57 61 | anbi12d | ⊢ ( 𝑟  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  →  ( ( 𝑟  Er  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑟 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  Er  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 63 | 62 | spcegv | ⊢ ( { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  ∈  V  →  ( ( { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  Er  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ∃ 𝑟 ( 𝑟  Er  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑟 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 64 | 56 63 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( ( { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) }  Er  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑢 )  =  ( 𝐹 ‘ 𝑣 ) ) } 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) )  →  ∃ 𝑟 ( 𝑟  Er  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑟 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 65 | 50 52 64 | mp2ani | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑟 ( 𝑟  Er  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑟 𝑦  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) |