| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relopabv |
⊢ Rel { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } |
| 2 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 3 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 4 |
2 3
|
anbi12i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → 𝑢 = 𝑥 ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → 𝑣 = 𝑦 ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 9 |
6 8
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 |
|
eqid |
⊢ { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } |
| 11 |
9 10
|
brab2a |
⊢ ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 |
|
simpl |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑥 ) → 𝑢 = 𝑦 ) |
| 13 |
12
|
fveq2d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑥 ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑥 ) → 𝑣 = 𝑥 ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑥 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 16 |
13 15
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑥 ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 |
16 10
|
brab2a |
⊢ ( 𝑦 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 |
4 11 17
|
3bitr4i |
⊢ ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ 𝑦 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ) |
| 19 |
18
|
biimpi |
⊢ ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 → 𝑦 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ) |
| 20 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 21 |
|
simprlr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 22 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 23 |
|
simprr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 24 |
22 23
|
eqtrd |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 25 |
20 21 24
|
jca31 |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 26 |
|
simpl |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → 𝑢 = 𝑦 ) |
| 27 |
26
|
fveq2d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 28 |
|
simpr |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → 𝑣 = 𝑧 ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 30 |
27 29
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 31 |
30 10
|
brab2a |
⊢ ( 𝑦 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑧 ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 32 |
11 31
|
anbi12i |
⊢ ( ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ∧ 𝑦 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 33 |
|
simpl |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑧 ) → 𝑢 = 𝑥 ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑧 ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 |
|
simpr |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑧 ) → 𝑣 = 𝑧 ) |
| 36 |
35
|
fveq2d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑧 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 37 |
34 36
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑧 ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 38 |
37 10
|
brab2a |
⊢ ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑧 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 39 |
25 32 38
|
3imtr4i |
⊢ ( ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ∧ 𝑦 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑧 ) → 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑧 ) |
| 40 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
| 41 |
40
|
biantru |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 42 |
|
pm4.24 |
⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 43 |
|
simpl |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑥 ) → 𝑢 = 𝑥 ) |
| 44 |
43
|
fveq2d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑥 ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 45 |
|
simpr |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑥 ) → 𝑣 = 𝑥 ) |
| 46 |
45
|
fveq2d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑥 ) → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 47 |
44 46
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑥 ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 48 |
47 10
|
brab2a |
⊢ ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 49 |
41 42 48
|
3bitr4i |
⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑥 ) |
| 50 |
1 19 39 49
|
iseri |
⊢ { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } Er 𝐴 |
| 51 |
11
|
baib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 52 |
51
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 53 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
| 54 |
|
simprll |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) → 𝑢 ∈ 𝐴 ) |
| 55 |
|
simprlr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) → 𝑣 ∈ 𝐴 ) |
| 56 |
53 53 54 55
|
opabex2 |
⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } ∈ V ) |
| 57 |
|
ereq1 |
⊢ ( 𝑟 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } → ( 𝑟 Er 𝐴 ↔ { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } Er 𝐴 ) ) |
| 58 |
|
simpl |
⊢ ( ( 𝑟 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑟 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } ) |
| 59 |
58
|
breqd |
⊢ ( ( 𝑟 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑟 𝑦 ↔ 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ) ) |
| 60 |
59
|
bibi1d |
⊢ ( ( 𝑟 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝑟 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 61 |
60
|
2ralbidva |
⊢ ( 𝑟 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑟 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 62 |
57 61
|
anbi12d |
⊢ ( 𝑟 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } → ( ( 𝑟 Er 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑟 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } Er 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 63 |
62
|
spcegv |
⊢ ( { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } ∈ V → ( ( { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } Er 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑟 ( 𝑟 Er 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑟 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 64 |
56 63
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } Er 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) } 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑟 ( 𝑟 Er 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑟 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 65 |
50 52 64
|
mp2ani |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑟 ( 𝑟 Er 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑟 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |