Step |
Hyp |
Ref |
Expression |
1 |
|
erex |
⊢ ( 𝑅 Er 𝐴 → ( 𝐴 ∈ 𝑉 → 𝑅 ∈ V ) ) |
2 |
1
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → 𝑅 ∈ V ) |
3 |
|
ecexg |
⊢ ( 𝑅 ∈ V → [ 𝑢 ] 𝑅 ∈ V ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → [ 𝑢 ] 𝑅 ∈ V ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → [ 𝑢 ] 𝑅 ∈ V ) |
6 |
5
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → ∀ 𝑢 ∈ 𝐴 [ 𝑢 ] 𝑅 ∈ V ) |
7 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) |
8 |
7
|
fnmpt |
⊢ ( ∀ 𝑢 ∈ 𝐴 [ 𝑢 ] 𝑅 ∈ V → ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) Fn 𝐴 ) |
9 |
6 8
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) Fn 𝐴 ) |
10 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑅 Er 𝐴 ) |
11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
12 |
11
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
13 |
10 12
|
erth |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
14 |
|
eceq1 |
⊢ ( 𝑢 = 𝑥 → [ 𝑢 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
15 |
|
ecelqsg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑥 ∈ 𝐴 ) → [ 𝑥 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
16 |
2 15
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → [ 𝑥 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
17 |
7 14 11 16
|
fvmptd3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = [ 𝑥 ] 𝑅 ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = [ 𝑥 ] 𝑅 ) |
19 |
|
eceq1 |
⊢ ( 𝑢 = 𝑦 → [ 𝑢 ] 𝑅 = [ 𝑦 ] 𝑅 ) |
20 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
21 |
|
ecelqsg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑦 ∈ 𝐴 ) → [ 𝑦 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
22 |
2 21
|
sylan |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → [ 𝑦 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
23 |
7 19 20 22
|
fvmptd3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) = [ 𝑦 ] 𝑅 ) |
24 |
23
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) = [ 𝑦 ] 𝑅 ) |
25 |
18 24
|
eqeq12d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ↔ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
26 |
13 25
|
bitr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) |
27 |
26
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) |
28 |
27
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) |
29 |
|
mptexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∈ V ) |
30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∈ V ) |
31 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) → ( 𝑓 Fn 𝐴 ↔ ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) Fn 𝐴 ) ) |
32 |
|
simpl |
⊢ ( ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ) |
33 |
32
|
fveq1d |
⊢ ( ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) ) |
34 |
32
|
fveq1d |
⊢ ( ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) |
36 |
35
|
bibi2d |
⊢ ( ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) ) |
37 |
36
|
2ralbidva |
⊢ ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) ) |
38 |
31 37
|
anbi12d |
⊢ ( 𝑓 = ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) → ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) ) ) |
39 |
38
|
spcegv |
⊢ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ∈ V → ( ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
40 |
30 39
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → ( ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ 𝐴 ↦ [ 𝑢 ] 𝑅 ) ‘ 𝑦 ) ) ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
41 |
9 28 40
|
mp2and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Er 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) ) ) |