Description: Given any equivalence relation R , one can define a function f such that all elements of an equivalence classe of R have the same image by f . (Contributed by Thierry Arnoux, 25-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | tgjustr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erex | |
|
2 | 1 | impcom | |
3 | ecexg | |
|
4 | 2 3 | syl | |
5 | 4 | adantr | |
6 | 5 | ralrimiva | |
7 | eqid | |
|
8 | 7 | fnmpt | |
9 | 6 8 | syl | |
10 | simpllr | |
|
11 | simpr | |
|
12 | 11 | adantr | |
13 | 10 12 | erth | |
14 | eceq1 | |
|
15 | ecelqsg | |
|
16 | 2 15 | sylan | |
17 | 7 14 11 16 | fvmptd3 | |
18 | 17 | adantr | |
19 | eceq1 | |
|
20 | simpr | |
|
21 | ecelqsg | |
|
22 | 2 21 | sylan | |
23 | 7 19 20 22 | fvmptd3 | |
24 | 23 | adantlr | |
25 | 18 24 | eqeq12d | |
26 | 13 25 | bitr4d | |
27 | 26 | ralrimiva | |
28 | 27 | ralrimiva | |
29 | mptexg | |
|
30 | 29 | adantr | |
31 | fneq1 | |
|
32 | simpl | |
|
33 | 32 | fveq1d | |
34 | 32 | fveq1d | |
35 | 33 34 | eqeq12d | |
36 | 35 | bibi2d | |
37 | 36 | 2ralbidva | |
38 | 31 37 | anbi12d | |
39 | 38 | spcegv | |
40 | 30 39 | syl | |
41 | 9 28 40 | mp2and | |